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Abstract

This paper presents a new approach to modeling transitional dynamics in dynamic models of imper-

fect competition, a crucial yet often neglected aspect of empirical models in industrial organization that

seek to understand market responses to policy and environmental changes. We introduce Nonstationary

Oblivious Equilibrium (NOE), a computationally efficient equilibrium concept based on a mean-field

approximation designed to model short- and medium-run market dynamics. Addressing potential limita-

tions of NOE in more concentrated markets or under aggregate shocks, we propose a variant, NOE with

Re-solving (RNOE). RNOE modifies firms’ strategies by re-computing NOE as industry states get real-

ized; an iterative process inspired by real-world industry practice that has behavioral appeal. We show

the potential of NOE and RNOE by applying them to an empirical setting of technology adoption and

to two classic dynamic oligopoly models, demonstrating that, in a wide variety of settings of empirical

interest, they generate equilibrium behavior that is close to Markov perfect equilibrium in both the short

and long runs.

1 Introduction

Many empirical applications in industrial organization (IO) study markets with imperfect competition and

forward looking agents. Modeling and understanding strategic behavior in these markets is crucial to under-

standing such classic topics in IO as R&D investment, entry/exit, mergers and acquisitions, and learning-by-

doing. In recent decades, there has been an explosion in the literature studying dynamic models of imperfect
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competition in diverse empirical settings (e.g., see Aguirregabiria et al. (2021) for an extensive survey of the

literature). Because of the complexity of even the simplest models of dynamic games, however, researchers

are often presented with a choice between dynamic realism (forward-looking firm behavior) and static com-

plexity (firm heterogeneity or allowing for a sufficient number of players or state variables). The canonical

solution concept used in this literature, Markov Perfect Equilibrium (MPE), frequently precludes obtaining

both goals simultaneously. Thus, many applications are forced to compromise on one dimension or the

other, sacrificing some economic realism.

In recent years, the literature has developed methods for analyzing complex dynamic games that can

help alleviate this trade-off. These advancements have typically been obtained either through computational

approximations to MPE1 or through the introduction of new, possibly more realistic, equilibrium concepts.2

These new models have been shown to work well under various conditions when the object of study is

long-run industry behavior. However, in many applications central to IO, we are interested in short- and

medium-run industry behavior, and a model of long-run behavior may not provide a realistic approximation

to these. A natural example is finite horizon problems starting from a particular initial state of interest,

for which focusing on the stationary distribution over the recurrent class may not be appropriate (e.g., see

Buchholz, 2022; Chen and Jeziorski, 2022). Other examples include applications to policy and regulation

in which a policy change alters the equilibrium behavior and long-run distribution of states. If the stationary

distribution of the industry changes, it may be equally important to compute the new stationary distribution

as to describe the transitional dynamics between the old and new stationary distributions. For example, we

may want to know how long it takes for an R&D subsidy to drive a meaningful amount of investment, or

how long it takes for sufficient entry to occur after a merger. Transitional dynamics may also be important

when studying new markets, where the central questions often surround entry dynamics or product adoption

speed.

This paper proposes a framework for studying the transitional dynamics of imperfectly competitive

markets with forward-looking firms or agents. With this motivation, we introduce a novel equilibrium

concept that we call Nonstationary Oblivious Equilibrium (NOE). The framework has two goals: (i) to

obtain a conceptually and computationally light model of transitional dynamics that closely follows MPE in

empirically realistic models for which MPE is infeasible to compute; and (ii) to obtain a behavioral model

that is a plausible approximation of the decision making process that firms may use.

The canonical form of our model extends oblivious equilibrium (OE) to model transitional dynamics
1See, for example, Pakes and McGuire (2001), Farias et al. (2012), and Sweeting (2013).
2See Weintraub et al. (2008), Fershtman and Pakes (2012), Benkard et al. (2015) and Ifrach and Weintraub (2016).
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for industries with many firms (e.g., tens of firms) that are not too concentrated. OE was introduced in

Weintraub et al. (2008) to study the long-run behavior of the industry; our approach naturally extends it to

study transitional dynamics. The critical feature of NOE is that firms rely on a mean-field approximation of

the short- and medium-run industry state trajectory, in addition to an approximation based on an OE station-

ary distribution for the long run. Some of the approaches discussed above to study long-run dynamics can

potentially be modified to analyze transitional dynamics (e.g., see the discussions in Ifrach and Weintraub,

2016 and Farias et al., 2012). However, we believe that NOE, and the extension discussed below of RNOE,

provide a simpler and computationally lighter alternative to those approaches. In addition, since they ex-

plicitly model transitional dynamics, we think they are a more natural starting point for studying short-run

dynamics.

In NOE, firms optimize against a deterministic trajectory for the industry state. This is a reasonable

behavioral assumption when there are enough firms so that idiosyncratic shocks approximately average out

at the industry level. However, when there are a small number of firms, and particularly when there are one

or two dominant firms, the actual evolution of the industry can deviate quite a bit from its expectation. In

NOE, firms also optimize against a deterministic trajectory for the aggregate shock, which may not be a

good behavioral assumption if the aggregate shock is highly variable. Both of these issues can cause NOE

strategies and transitional dynamics to deviate from those of MPE.

Thus motivated, we introduce an equilibrium concept that extends NOE, that we call NOE with Re-

solving (RNOE). We find that RNOE closely follows MPE for oligopolistic markets with a small and

medium number of firms in both the short and long runs, even in the presence of a highly variable ag-

gregate shock. In a RNOE, firms use initial period NOE strategies in every period, i.e., in each period they

“wake up” and observe the realized industry state (as opposed to the expected state), and then reoptimize,

solving for a new NOE given that new initial state. They then play the reoptimized initial period NOE

strategies for that period. This process is repeated in every period until steady state is attained. Note that this

model is behavioral because when firms compute their optimal strategies they do not account for the fact

that they will reoptimize in future periods. Not accounting for future reoptimization is what makes RNOE

computation so simple: the computational cost of RNOE is equivalent to the cost of solving NOE multiple

times (once for each time period until steady state is attained). Meanwhile, RNOE is useful because it allows

firms to incorporate new information in every period about the current industry state and the current level

of the aggregate shock, both of which may differ significantly from the expected state when the number of

firms is small.

Such a heuristic can also mimic real-world firm decision making. Similar approaches that use re-solving,
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dubbed as model predictive or receding horizon control, have been widely used for decades in the op-

timization of industrial processes such as chemical plants, oil refineries, and power systems (Camacho

and Bordons, 2004). Re-solving techniques based on large-scale ‘fluid’ approximations applied to single-

agent problems have also become popular in business applications, including network revenue management

(Phillips, 2021), retailing (Acimovic and Farias, 2019), and in modern online platforms such as bidding

in online advertising auctions (Balseiro and Gur, 2019) and online matching (Vera and Banerjee, 2021).

Balseiro et al. (2023) provides a survey of such ‘fluid certainty equivalent control heuristics’ in dynamic re-

source allocation problems arising in Operations Research applications, discussing conditions under which

re-solving can achieve provably significantly better performance than using the ‘fluid’ approximation just

once. Cai and Judd (2023) provides a recent application of these ideas in single-agent dynamic stochastic

problems arising in economics. Because re-solving is widely used in industrial and practical applications,

we believe RNOE provides an appealing behavioral model.

After introducing NOE and RNOE, we consider two applications. First, we apply NOE to compute the

equilibria of the Ryan and Tucker (2012b) network adoption model. Ryan and Tucker (2012b) consider

forward-looking agents choosing whether to adopt teleconferencing technology in the presence of network

effects. They introduce a game with many agents and dozens of observable agent types depending on

geographical location, department, and seniority. The setting leads to a natural economic question of what

is the optimal adoption subsidy. On the one hand, the firm wants to subsidize key leaders who exert positive

externalities on other types. On the other hand, the firm wants to subsidize types with relatively more

significant adoption costs. Computing the optimal subsidy requires obtaining counterfactual adoption paths

by recomputing the adoption equilibrium. However, in this case directly applying MPE is highly impractical

due to the high-dimensional state space. Common approaches to obtaining tractability would be to reduce

the number of agent types or to assume that the agents are myopic. Applying NOE allows the researcher

to retain the full type heterogeneity while also modeling forward-looking behavior. Computing the optimal

adoption subsidy highlights the benefits of our approach, since both the stationary distribution (i.e., the total

number of adopters) and transitional dynamics (i.e., speed of adoption) are of potential interest to the firm.

Overall, the optimal subsidy, calculated using NOE, increases adoption of the technology by more than 20%

compared to a subsidy that targets all types uniformly.

Second, we apply NOE and RNOE to two classic dynamic oligopoly models with only a few active firms:

differentiated products Bertrand competition with product R&D, and Cournot competition with investment

that reduces marginal cost. We consider a wide range of parameterizations that generate symmetric as well

as concentrated industry structures. Our most extreme parameterization delivers a ”winner-take-all” industry
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in which one firm with superior marginal cost takes over the whole market for extended periods of time, and

where the identity of the leading firm periodically changes depending on random investment outcomes. Such

industries are notoriously hard to analyze using mean-field approximations because they ignore whether the

industry leader is present in any given period. We demonstrate that NOE delivers transitional dynamics

and welfare outcomes close to those of MPE in all but the most concentrated industry configurations. In

the concentrated industry configurations, “re-solving” delivers significant performance improvements with

a moderate additional computational burden. RNOE also closely matches MPE in industries with aggregate

shocks.

Re-solving techniques have been used in the context of specific game-theoretic settings such as dynamic

pricing games of perishable assets (Gallego and Hu, 2014). In addition, model predictive control has been

applied in ‘mean-field games’ arising in the control literature (Degond et al., 2014). However, as far as we

know, we are the first to apply re-solving techniques based on large-scale approximations to study more

generic oligopolies in complex dynamic environments of the type that are of interest in IO.3

Since we introduced NOE in a previous version of this paper, it has found application in many empirical

settings (e.g., see Wilson, 2012; Qi, 2013; Pavanini, 2014; Saeedi, 2019; Sweeting, 2015; Igami, 2017; Bian,

2018; Caoui, 2023; Dimitrellos, 2022; George, 2022; Buchholz, 2022; Johnston et al., 2023). It has been

applied to study transitional dynamics in markets with many firms such as banking, real estate, ride sharing,

and e-commerce. We believe that this version of the paper improves upon NOE and also broadens the set of

applications to which it can be applied. Our hope is that this paper will further stimulate researchers to use

NOE and RNOE to study transitional dynamics.

The paper is organized as follows. Section 2 introduces a canonical dynamic game with aggregate

shocks and defines MPE. In Section 3, we introduce NOE and an algorithm to compute it. In this section,

we also introduce the concept of re-solving. Section 4 contains an empirical application calibrated using the

estimates from Ryan and Tucker (2012b). Section 5 presents numerical experiments of canonical dynamic

oligopoly models. Section 6 concludes.

2 A Dynamic Model of Imperfect Competition

In this section we formulate a model of an industry in which are firms competing in an oligopolistic market-

place. The model encompasses the Ericson and Pakes (1995) model (henceforth, EP) and closely follows
3In the macroeconomics literature, a concept similar to NOE was introduced in a model with a continuum of agents by Costantini

and Melitz (2008) – a non-stationary extension of Melitz (2003). In contrast, NOE (and RNOE) are intended to also study models
with a finite number of firms such as those that are of interest in IO.
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Weintraub et al. (2008).

2.1 Model and Notation

We introduce the main elements of our model.

Time Horizon and Agents. We index time periods with non-negative integers t ∈ {0, 1, 2, . . .}. Agents

are either active or inactive. Inactive agents can enter the game and become active. In contrast, any active

agent can exit the game. The set of active agents (incumbents) at time t is denoted by St. Each agent in St

is assigned a unique positive integer-valued index, denoted by i. .

State Space. Firm heterogeneity is reflected through agent states, xit. We assume that the state space

is finite. Without loss of generality, we denote the values of the agent state using non-negative integers:

xit ∈ X = {0, 1, 2, . . . , x}. To fix an interpretation of the model, in the remainder of this section, we will

refer to the active set of agents as an industry, to an agent as a firm, and to an agent’s state as its quality

level. For ease of exposition, we would suggest that readers have in mind an example where single product

firms compete in a logit demand model (and this will also be one of our examples below). However, agents

might be individuals or groups of individuals. States might more generally reflect productivity, capacity,

the size of a firm’s consumer network, or any other aspect of the firm that affects its profits. If the agents

are individuals, the state may include any utility-relevant characteristics such as the amount of savings, or a

status of costly technology adoption (see Section 4).

We define the industry state, st, to be a vector that lists the number of incumbent firms at each quality

level in period t, for each possible quality level x ∈ X . The state space S =
{
s ∈ N|X |

∣∣∣∑x∈X s(x) <∞
}

is the set of all possible industry states. For an incumbent firm i, we define s−i,t to be the state of the

competitors of firm i; s−i,t is simply equal to st with firm i subtracted out. That is, s−i,t(x) = st(x)− 1 if

xit = x, and s−i,t(x) = st(x), otherwise.4

In addition to the industry state we also allow for a common state (aggregate shock), zt. We assume

that zt is a non-negative integer bounded by z̄ and denote the set of possible aggregate shocks as Z ={
z ∈ N+

∣∣∣z ≤ z̄}.

Although in principle there are a countable number of industry states, for some of the technical argu-

ments we will also consider an extended state space S =
{
s ∈ <|X |+

∣∣∣∑x∈X s(x) <∞
}

. This notion will

be useful, for example, when considering the expected value of the industry state. Similarly, we introduce
4Note that because we focus on symmetric and anonymous equilibrium strategies in the sense of Doraszelski and Pakes (2007),

we restrict attention to industry states for which the identities of firms do not matter.
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an extended aggregate shock space Z =
{
z ∈ <+

∣∣∣z ≤ z̄}.

Actions. Each period, active firms can take simultaneous actions ιit ∈ I. In the interpretation of the

model given above, we think of these actions as investments in quality. However, in a broader interpretation

actions may include pricing, capacity investment, or technology adoption. The action space I may be a

convex subset of the real line, for example if ι is investment amount or price, but it may also be a finite set

such as {0, 1}, for example if the action is technology adoption.

Single-Period Profit Function. Each period, each incumbent firm earns profits on a spot market. A firm’s

single period expected profit is denoted by π(xit, s−i,t, ιit, zt), and depends on its quality level xit, its

competitors’ state, s−i,t, the action taken ιit, and the level of the aggregate shock zt. If the agents are

individuals, profit π reflects agents’ utility functions. We assume the single-period profit function is a

continuous function of investment. We also assume that the single-period profit function is a continuous

function of the industry state and the aggregate shock over the extended state spaces. Note that the current

formulation presumes a stationary model since π does not depend on t, but the framework can be easily

extended to a non-stationary setup in which profits depend on t, as long as they converge uniformly to a

limit profit function as t grows.

To simplify exposition and analysis, we follow the EP model and further assume that the single-period

profit function takes the form:5

πt(xit, s−i,t, ιit, zt) = π(xit, s−i,t, zt)− c(ιit, xit, zt).

The cost of investment is given by a non-negative function c(ιit, xit, zt) that depends on the firm’s individual

state xit, the investment level ιit, and potentially the level of aggregate shock zt. The dependence of the

investment cost on the aggregate shock zt allows for low-investment-cost and high-investment-cost periods.

Exit process. The model also allows for entry and exit. In each period, each incumbent firm observes a

positive real-valued sell-off value φit that is private information to the firm. If the sell-off value exceeds the

value of continuing in the industry, then the firm may choose to exit, in which case it earns the sell-off value

and then ceases operations permanently. We assume that the random variables {φit|t ≥ 0, i ≥ 1} are i.i.d.

and have a well-defined density function with finite moments.

Entry process. The model can also accommodate a variety of different entry processes. Specifically, the

number of entrants can be fixed or random, entry costs can be fixed or random, and the entry state can be
5Our formulation follows EP in which players are coupled in the the single-period profit function only through their states. It

is possible to allow the single-period profits to also depend on the competitors’ actions (e.g., in a learning-by-doing model). This
requires an extension of NOE that we will not present here to simplify the exposition.
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predetermined, randomly determined, or even controlled (meaning the entrant can either choose the entry

state or at least influence it). For concreteness, we assume the entry model of Weintraub et al. (2008). In

that model, there are a large number of potential entrants who play a symmetric mixed strategy to enter the

industry after paying a setup cost κ. In that case, we obtain that the number of firms entering during period

t is a Poisson random variable that is conditionally independent of {φit, |t ≥ 0, i ≥ 1}, conditioned on st.6

Entrants do not earn profits in the period that they enter. They appear in the following period at state xe and

can earn profits thereafter.

We denote the expected number of firms entering at industry state st, by λ(st, zt), and assume that entry

rates are bounded by a constant λ > 0. This state-dependent entry rate will be endogenously determined

in equilibrium, and our solution concept will require that it satisfies a zero expected profit condition. As is

common in this literature and to simplify the analysis, we assume potential entrants are short-lived and do

not consider the option value of delaying entry. Potential entrants that do not enter the industry disappear

and a new generation of potential entrants is created in the next period.

Transition dynamics. Given a firm’s strategy µ and state at time t, the firm’s transition to a state at time

t+ 1 is described by the following Markov kernel:

(2.1) Pµ
[
xi,t+1 = x′

∣∣∣xit = x; ιit = ι, st = s
]
.

Uncertainty in state transitions may arise, for example, due to the risk associated with a research and de-

velopment endeavor or a marketing campaign. We assume that transitions are independent across firms

conditional on the industry state and investment levels. We also assume these transitions are independent of

all previously defined random quantities. The dependence of the kernel Pµ on the industry state allows, for

example, for the existence of spillover effects across firms. We also allow for deterministic transitions. We

assume that the kernel is a continuous function of investment ι.7

Aggregate shocks are assumed to evolve in an exogenous independent fashion according to an irre-

ducible Markov process with kernel P
[
zi,t+1 = z′

∣∣∣zit = z
]
. We assume that this process admits a unique

invariant distribution.

Timing of Events. In each period, events occur in the following order: (1) Each incumbent firm observes its

sell-off value and then makes exit and investment decisions; (2) The number of entering firms is determined

and each entrant pays the entry cost; (3) Incumbent firms compete in the spot market and receive profits; (4)
6To avoid pathological entry behavior we also assume that κ > β · φ̄, where φ̄ is the expected net present value of entering the

market, investing zero and earning zero profits each period, and then exiting at an optimal stopping time.
7Like the single period-profit function, the transition kernel could also depend on competitors’ actions.
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Exiting firms exit and receive their sell-off values; (5) Individual states of each firm xi,t+1 are determined,

new entrants enter, and the industry takes on a new state st+1. New aggregate shock zt+1 is revealed to all

firms.

Firms’ objective. Firms aim to maximize expected discounted profits. The interest rate is assumed to

be positive and constant over time, resulting in a constant discount factor of β ∈ (0, 1) per time period.

Finally, we assume that for all competitors’ decisions and all continuation values, a firm’s one time-step

ahead optimization problem to determine its optimal investment has a unique solution.8

2.2 Equilibrium

As a model of industry behavior, we first introduce pure strategy Markov Perfect Equilibrium (MPE), in the

sense of Maskin and Tirole (1988). We further assume that equilibrium is symmetric, such that all firms

use a common investment/exit strategy. In MPE, incumbent firms follow a Markov (investment and exit)

strategy that is self-generating in the sense of being optimal when all competitor firms follow the same

strategy. At the same time, the equilibrium entry mixed strategy among potential entrants yields an entry

rate such that entrants are exactly indifferent between entering and not entering. We now introduce some

notation required to state these two properties precisely.

We denote each incumbent firm’s investment strategy as ι(xit, s−i,t, zt), which is a function of the

firm’s own state, its competitors’ states and the common state. Incumbent firms also have an exit strategy,

ρ(xit, s−i,t, zt), that takes the form of a cutoff rule: firm i ∈ St exits at time t if and only if the sell-off value

is greater than ρ, i.e., φit ≥ ρ(xit, s−i,t, zt).9 LetM denote the set of exit/investment strategies µ = (ι, ρ),

and Λ denote the set of entry rate functions. An entry rate function λ ∈ Λ, takes the value λ(st, zt) at time

period t.

We define the value function V (x, s, z|µ′, µ, λ) to be the expected net present value for a firm at state x

when its competitors’ state is s, the aggregate shock takes value z, given that its competitors each follow a

common strategy µ ∈M, the entry rate function is λ ∈ Λ, and the firm itself follows strategy µ′ ∈M:

V (x, s, z|µ′, µ, λ) = Eµ′,µ,λ

[
τi∑
k=t

βk−tπ(xik, s−i,k, ιik, zk) + βτi−tφi,τi

∣∣∣xit = x, s−i,t = s, zt = z

]
,

8This assumption is similar to the unique investment choice admissibility assumption in Doraszelski and Satterthwaite (2010)
that is used to guarantee the existence of an equilibrium to the model in pure strategies. It is satisfied by many of the commonly
used specifications in the literature.

9Weintraub et al. (2008) shows that there always exists an optimal exit strategy of this form even among very general classes
of exit strategies. Furthermore, without loss of generality throughout the paper, we restrict our attention to cut-offs lower than
supx,s,z π(x, s, z)/(1− β) + φ.
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where i is taken to be the index of a firm at quality level x at time t, τi is a random variable representing the

time at which firm i exits the industry, and the subscripts of the expectation indicate the strategy followed by

firm i, the strategy followed by its competitors, and the entry rate function. In an abuse of notation, we will

use the shorthand V (x, s, z|µ, λ) ≡ V (x, s, z|µ, µ, λ), to refer to the expected discounted value of profits

when firm i follows the same strategy µ as its competitors.

A MPE to our model comprises of an investment/exit strategy µ = (ι, ρ) ∈ M, and an entry rate

function λ ∈ Λ that satisfy the following conditions:

1. Incumbent firm strategies represent a MPE:

(2.2) sup
µ′∈M

V (x, s, z|µ′, µ, λ) = V (x, s, z|µ, λ) ∀x ∈ X , ∀s ∈ S, z ∈ Z.

2. At each state, either entrants have zero expected profits or the entry rate is zero (or both):

∑
s∈S,z∈Z λ(s, z) (βEµ,λ [V (xe, s−i,t+1, zt+1|µ, λ)|st = s, zt = z]− κ) = 0

βEµ,λ [V (xe, s−i,t+1, zt+1|µ, λ)|st = s, zt = z]− κ ≤ 0 ∀s ∈ S, z ∈ Z

λ(s, z) ≥ 0 ∀s ∈ S, z ∈ Z.

Doraszelski and Satterthwaite (2010) establish existence of an equilibrium in pure strategies for a closely

related model. We do not provide an existence proof here because it is long and cumbersome and would

replicate this previous work. With respect to uniqueness, we presume that our model may have multiple

equilibria.10

There are a wide variety of dynamic programming algorithms available that can be used to solve for

MPE to our model. However, these algorithms require compute time and memory that grow at least propor-

tionately with the number of relevant industry states, which in turn grows quickly (high-order polynomial)

with the number of individual states and firms in the industry. In the empirical models we have in mind, the

number of industry states is typically so large that it would not be possible to store the strategy function on

a computer, let alone compute it. This difficulty motivates our alternative approach.
10Besanko et al. (2010) provide an example of multiple equilibria in their closely related model.
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3 Nonstationary Oblivious Equilibrium

Oblivious equilibrium (OE) as introduced in Weintraub et al. (2008) offers a way to approximate long-run

Markov perfect industry dynamics. Using a similar idea of averaging effects, in this section we introduce a

new equilibrium concept, nonstationary oblivious equilibrium (NOE), that can be used to approximate the

short-run dynamic behavior (transitional dynamics) of an industry starting from an initial state of interest.

To simplify notation, we assume that the industry is at the initial state of interest, denoted (s0, z0), at time

period t = 0. Each initial state generates different transitional dynamics and thus different associated NOE.

We provide an important extension of NOE in Section 3.6 by introducing re-solving.

OE is based on the idea that when there are a large number of firms (and no aggregate shocks), simul-

taneous changes in individual firm quality levels average out such that in the long run the industry state

remains roughly constant over time. Hence, in OE, firms assume that the industry state is constant and

corresponds to the long-run expected state given the strategies being played. This dramatically simplifies

computation because in OE strategies only depend on the firms’ own states.

Based on a similar notion, we introduce a method to model the short-run behavior of an industry that

starts from a given state of interest. If there are a large number of firms (and no aggregate shocks), the in-

dustry state starting from a given initial state roughly follows a deterministic trajectory. In this setting, each

firm can make near-optimal decisions based only on its own quality level and by knowing the deterministic

trajectory followed by the industry state. With this motivation, we consider restricting firm strategies so that

each firm’s decisions depend only on the firm’s quality level and the time period. We call such restricted

strategies nonstationary oblivious since they involve decisions made without full knowledge of the circum-

stances — in particular, the state of the industry. Note that nonstationary oblivious strategies generelize

oblivious strategies because they depend on the time period.

It is worth noting that we do not expect nonstationary oblivious strategies to necessarily perform well

in the presence of aggregate shocks unless their evolution is deterministic or has small variance around its

mean. Weintraub et al. (2010) extends the concept of OE so that strategies are a function of the aggregate

shock. Although we could employ a similar method with NOE, we choose not to because it leads to a more

complex equilibrium concept and calculation. Instead, we propose re-solving as an alternative avenue to

deal with aggregate shocks.
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3.1 Nonstationary Oblivious Strategies and Entry Rate Functions

Let us start by denoting M̃ ⊂M as the set of oblivious strategies, that is, strategies that are only a function

of the firm’s own state. A nonstationary oblivious strategy is a sequence of oblivious strategies, so let

M̃ns = M̃∞ ⊂ M∞ denote the set of nonstationary oblivious strategies. Hence, if µ ∈ M̃ns, then

µ = {µ0, µ1, ...},where for each time period t ≥ 0, µt ∈ M̃ is an oblivious strategy. To illustrate, if firm i

uses strategy µ ∈ M̃ns, then at time period t, firm i takes action µt(xit), so the action depends both on the

time period and the firm’s own state. In a NOE firms will make decisions assuming that the industry state,

as well as the aggregate shock evolve deterministically. Therefore, under this assumption, the time period

determines the industry state and common shock.

Similarly, let Λ̃ns = Λ̃∞ ⊂ Λ∞ denote the set of nonstationary oblivious entry rate functions, where

Λ̃ ⊂ Λ denotes the set of oblivious entry rates. A nonstationary oblivious entry rate function is a sequence

of oblivious entry rates. Hence, if λ ∈ Λ̃ns, then λ = {λ0, λ1, ...}, where for every period t ≥ 0, λt is a real

nonnegative number that represents the entry rate at time period t.

3.2 Sequence of Expected states and Value Functions

Suppose that all firms use a common strategy µ ∈ M̃ns and, with some abuse of notation, let an individual

firm transition kernel for period t be denoted by Pµt(x′|x, s) (see equation (2.1)). Note that at each period,

firms’ transitions are independent conditional on the current industry state. If there were an infinite number

of firms, though each evolves stochastically, the percentage of firms that transition from any individual

state to another would be deterministic. Similarly, the percentage of firms that exit would be deterministic.

Motivated by this fact, for µ ∈ M̃ns, λ ∈ Λ̃ns, we define the following sequence of (expected) industry

states:

(3.1) s̃t+1(x′;µ, λ, s0) =


∑

x∈X Pµt(x′|x, s̃t)s̃t(x;µ, λ, s0) + λt if x = xe∑
x∈X Pµt(x′|x, s̃t)s̃t(x;µ, λ, s0) otherwise.

Note that the sequence of states is defined for every possible starting state s0 ∈ S by setting s̃0 = s0. In

what follows we suppress the dependence of the sequence {s̃t : t ≥ 0} on s0 to simplify the notation.
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We also define the sequence of expected aggregate shock states:

~zt+1(z′; z0) =
∑
z∈Z
P(z′|z)~zt(z) ,(3.2)

z̃t+1 =
∑
z′∈Z

z′~zt+1(z′; z0) .(3.3)

Equation (3.2) determines the probabilities that the aggregate state is in each individual state z ∈ Z at a

given time period according to the Markov transition kernel P(z′|z). Then (3.3) computes the expected

value of the aggregate shock in that time period given the probability distribution. Note that the sequence of

expected aggregate states {z̃t : t ≥ 0} is defined for every possible starting state z0 ∈ Z by setting ~z0 to be

the canonical vector with a one for value z0. In what follows we suppress the dependence of the sequence

{z̃t : t ≥ 0} on z0 to simplify the notation.

For nonstationary oblivious strategies µ′, µ ∈ M̃ns, a nonstationary oblivious entry rate function λ ∈

Λ̃ns, and an initial industry state (s0, z0), we define a nonstationary oblivious value function for period t:

(3.4)
Ṽt(x|µ′,µ, λ, s0, z0) =

Eµ′
[∑τi

k=t β
k−tπ(xi,k, s̃−i,k(µ, λ), ιik, z̃k) + βτi−tφi,τi

∣∣∣xit = x
]
.

Note again that expected trajectories s̃ and z̃ depend on the starting state (s0, z0), thus all nonstationary

oblivious value functions depend on the starting state as well. These value functions should be interpreted as

the expected net present value of a firm that is at quality level x at time t and follows nonstationary oblivious

strategy µ′, under the assumption that, for all t ≥ 0, its competitors’ state will be given by s̃−i,t(µ, λ) and

the aggregate shock level will be given by z̃t at time t.11

The compertitors’ state s̃−i,t is obtained from the average industry state s̃t by subtracting company i. A

simple way to do this substraction to proportionally subtract one firm, that is, set

s̃−i,t(x) = s̃t(x)− s̃t(x)∑
x′ s̃t(x

′)
.

If there is no entry and exit this method presumes that firm i is a uniform sample from firms in the starting

state s0.12

11The expectation over industry states and aggregate shocks is taken inside the profit function. Instead, Benkard et al. (2015)
introduces a “simulated” version of OE, where the expectation over industry states is taken outside the profit function. This version
tends to work better in industries with a small number of firms at the cost of additional simulations to compute such expectations.
While a similar approach could be taken for NOE, we do not explore it in the current paper to avoid additional computational costs
and because we focus on the use of re-solving to study industries with a small number of firms.

12Alternatively we could compute s̃−i,t by conditioning on the actual state of the subtracted firm i at time t, xit. In such a
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Although the firm’s state trajectory only depends on the firm’s own strategy µ′, the nonstationary oblivi-

ous value function remains a function of the competitors’ strategy µ and the entry rate λ through the expected

state trajectory s̃t(µ, λ). We abuse notation by using Ṽt(x|µ, λ, s0, z0) ≡ Ṽt(x|µ, µ, λ, s0, z0) to refer to the

nonstationary oblivious value function when firm i follows the same strategy µ as its competitors.

3.3 Equilibrium

Equipped with the above machinery, we now define our new solution concept. To avoid pathological behav-

ior in which an entry rate grows large and is followed by massive exit, we restrict all entry rates to be less

than a predetermined upper bound λ.13 For a given starting state (s0, z0), a nonstationary oblivious equilib-

rium (NOE) consists of a strategy µ ∈ M̃ns and an entry rate function λ ∈ Λ̃ns that satisfy the following

conditions:

1. Firm strategies optimize a nonstationary oblivious value function:

(3.5) sup
µ′∈M̃ns

Ṽ0(x|µ′, µ, λ, s0, z0) = Ṽ0(x|µ, λ, s0, z0), ∀x ∈ X .

2. At every period of time, the nonstationary oblivious expected value of entry is zero or boundary

conditions are satisfied. For all t ≥ 0,

λt ∈ (0, λ) implies βṼt+1(xe|µ, λ, s0, z0)− κ = 0

βṼt+1(xe|µ, λ, s0, z0)− κ < 0 implies λt = 0

βṼt+1(xe|µ, λ, s0, z0)− κ > 0 implies λt = λ .

Note that the optimization of Ṽ0 implies, by dynamic programming principles, that firms optimize Ṽt for all

t ≥ 0.

We note that if we ignore aggregate shocks or if they follow a deterministic trajectory, a similar argument

to the one provided in Weintraub et al. (2008) shows that NOE approximates MPE as the industry becomes

large. We do not provide a proof to avoid replicating the argument.

case one would set s̃−i,t = E[s−i,t|xit = x]. This formulation is computationally impractical since s̃−i,t would need to be
recomputed for every xit, which requires many additional computations. However, we have experimented with this method and
found little difference in comparison with proportional subtraction. Consequently, we use proportional subtraction throughout the
paper because of its computational simplicity.

13We assume λ ≥
(
supx,s,ι,z π(x, s, ι, z)/(1− β) + φ

)
/κ. It is simple to show that under mild conditions an OE entry rate

must be less than λ. Moreover, in our computational experiments we never observed NOE entry rates growing beyond λ, so in
practice the restriction was not binding. For this reason and to simplify the explanation, λ is omitted in the description of the
algorithm in Section 3.5. We make use of λ, however, in the existence proof that follows.

14



3.4 Existence of NOE that Become Stationary

In this paper, we focus on NOE that become stationary as time progresses. That is, we focus on NOE

(µ, λ) ∈ M̃ns × Λ̃ns that converge to an OE (µ̃, λ̃) ∈ M̃ × Λ̃ in the following sense: for all x ∈ X ,

limt→∞ µt(x) = µ̃(x), and limt→∞ λt = λ̃. In this subsection, we show the existence of such NOE.

First, we define the set of converging nonstationary strategies and entry rate functions:

M̂ns = {µ ∈ M̃ns : for which there exists µ̃ ∈ M̃, such that, for all x ∈ X , lim
t→∞

µt(x) = µ̃(x)} ,

Λ̂ns = {λ ∈ Λ̃ns : for which there exists λ̃ ∈ Λ̃, such that, lim
t→∞

λt = λ̃} .

Note that µ̃ and λ̃ in the definitions above are oblivious and entry rate strategies (not necessarily equilibrium).

We make the following additional assumptions that we keep throughout this section. First, we assume that

the investment space I is a convex and compact subset of <n+, for some n ≥ 1. Second, we assume that the

random variables {φit|t ≥ 0, i ≥ 1} have support <+.

We prove the following result under these assumptions, the model assumptions introduced in Section

2.1, and the assumption that entry rates are bounded. The primary challenge in establishing existence lies in

the fact that we are working within infinite-dimensional spaces. To address this, we employ the Brouwer-

Schauder-Tychonoff fixed point theorem. A detailed proof can be found in the appendix.

Theorem 3.1. For any given initial state (s0, z0), there exists a NOE (µ, λ) ∈ M̂ns× Λ̂ns, such that for all

x ∈ X , limt→∞ µt(x) = µ̃(x) and limt→∞ λt = λ̃, where (µ̃, λ̃) ∈ M̃ × Λ̃ is an OE.

We do not rule out the existence of multiple NOE; we focus on the study of NOE that are selected by

the algorithm described below.

3.5 Algorithm to Compute NOE

The theorem above is important because it justifies an algorithm for computing NOE that become stationary

and converge to OE. We impose this form of convergence in the algorithm, and then solve backwards for

NOE. In this way, the problem of finding a NOE is reduced to a finite-horizon problem.

Suppose that we are mostly interested in the behavior of the industry in the interval between time periods

t = 0 and t = T . Let Ṽ , µ̃, λ̃, s̃, z̃ be a (stationary) OE value function, strategy, entry rate, expected industry

state, and expected common state, respectively. Let T := min{t|βt−T maxx∈X Ṽ (x) ≤ δ}, where δ > 0

is a predetermined precision. We assume that there is a finite time horizon of length T after which NOE
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coincides with OE. More specifically, for all t > T , µt = µ̃, λt = λ̃, s̃t = s̃ and z̃t = z̃. In addition,

for t > T , firms earn profits according to the OE value function. This simplification should not have a

significant impact on the behavior of the industry for the time periods of interest between t = 0 and t = T .

After this reduction computing a NOE is simple; it requires solving finite-horizon one-dimensional dynamic

programming problems.

At each iteration of the algorithm, we (1) compute the strategies that maximize the nonstationary obliv-

ious value functions (step 12) and (2) we compute new entry rates depending on the extent of the violation

of the zero-profit conditions (step 18) while also checking the boundary condition for the entry rate (steps

15 and 16). Strategies and entry rates are updated “smoothly” (steps 22 and 23). The parameters N1, N2,

γ1, and γ2 are set after some experimentation to speed up convergence.One step of the algorithm resembles

a best-response operator against the current trajectory of expected industry states.

If ε0 = 0 and δ = 0, and the termination condition of the outer loop is satisfied with ε1 = ε2 = 0,

we have found an NOE. Small values of ε0, ε1, and ε2 allow for small errors associated with limitations of

numerical precision.

3.6 Nonstationary Oblivious Equilibrium with Re-solving (RNOE)

As discussed previously, in industries with a large number of firms and absent an aggregate shock (or if

the aggregate shock follows a deterministic trajectory or one close to its mean), the expected state remains

close to its expectation and, therefore, typically NOE strategies are close to those of MPE. However, if these

conditions fail, the industry state may significantly diverge from its expectation, and NOE strategies may be

far from optimal.

To mitigate potential approximation errors, we draw on established concepts from Operations Research

(OR) that are frequently applied in practice. In OR, it is common practice to approximate large dynamic

programs by employing their deterministic equivalents. Once a deterministic policy is derived, the algorithm

then “grows” the solution forward, allowing firms to re-optimize when such optimization is advantageous,

particularly when the observed state diverges from its expected value and new information becomes avail-

able. This method enables firms to refine their policies to more closely align with a full information best

response.

Re-solving is computationally feasible because each time the firm is permitted to re-optimize, it tackles

an approximate problem that is significantly simpler than the full dynamic programming solution. Re-

solving allows the firm to minimize losses when the industry state diverges from its expectation.
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Algorithm 1 Nonstationary Oblivious Equilibrium Solver with Starting State (s0, z0)

1: Compute OE (µ̃, λ̃)
2: λt := λ̃, for all t.
3: µt := µ̃, for all t.
4: Define ṼT+1(x|µ∗, µ, λ, s0, z0) := Ṽ (x), for all x, µ∗, µ, and λ.
5: Compute z̃t for t ∈ {0, ..., T}
6: n := 1.
7: repeat
8: Compute s̃t(µ, λ) for t ∈ {0, ..., T}.
9: ∆0 := 0; ∆1 := 0.

10: t := T .
11: repeat
12: Choose µ∗t ∈ M̃ to maximize Ṽt(x|µ∗, µ, λ, s0, z0) simultaneously for all x.
13: ψt = βṼt+1(xe|µ∗, µ, λ, s0, z0))− κ
14: ∆0 = max(∆0, ψt).
15: if λt > ε0 then
16: ∆1 = max(∆1,−ψt).
17: end if
18: λ∗t := λt(βṼt+1(xe|µ∗, µ, λ, s0, z0))/κ.
19: Let t := t− 1.
20: until t = 0.
21: ∆2 :=‖ µ− µ∗ ‖∞.
22: µ := µ+ (µ∗ − µ)/(nγ1 +N1).
23: λ := λ+ (λ∗ − λ)/(nγ2 +N2).
24: n := n+ 1.
25: until ∆0 ≤ ε1 and ∆1 ≤ ε1 and ∆2 ≤ ε2.

The computational tractability comes with some concessions. Similar to other re-optimization meth-

ods, RNOE prevents firms from considering future re-solving opportunities when making present decisions.

This limitation might introduce some dynamic inconsistency in firm behavior. However, such an approach

may more closely reflect real-world decision-making, as it mimics the optimization techniques frequently

employed in practice.

Formally, in the basic NOE, the firms use an exact state s0 at t = 0 and an approximation s̃t for each

t > 0. In RNOE firms incorporate information about the actual realized state st for t > 0, and a basic NOE

is re-solved in every time period.

More specifically, suppose that the initial state is (s0, z0). The main idea is that at time t = 0 firms

implement (µ0, λ0), the NOE strategy and the entry rate at t = 0 given the initial state (s0, z0). Given this

strategy and the initial state, at time t = 1, the actual realized industry state is s1. Similarly, the aggregate

shock evolves to z1. Then, firms re-solve for NOE with starting state (s1, z1) and firms implement the

first-period strategy and entry rate associated to the new NOE. This procedure is repeated again and again.
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One advantage of RNOE with respect to NOE is that the former can self-correct if the industry state

and aggregate shock depart from their expectation. This correction becomes even more important under the

presence of aggregate shocks because, even with many firms the aggregate shock is not subject to averaging.

Hence, typically, the aggregate shock trajectory may experience significant random fluctuations around its

expectation. Re-solving alleviates this concern because the actual value of the aggregate shock is updated

every period.

Now, we formally define RNOE. A RNOE to our model is comprised of an investment/exit strategy

µ = (ι, ρ) ∈M, and an entry rate function λ ∈ Λ that satisfy the following:

(µ(s, z), λ(s, z)) = (µs,z0 , λs,z0 ), ∀s ∈ S, z ∈ Z ,

where for every s ∈ S and z ∈ Z , (µs,z0 , λs,z0 ) is the first-period strategy of an NOE with initial starting

state (s, z). Note that RNOE strategies are stationary, Markovian, and are a function of both the industry

state and the aggregate shock level. However, RNOE is computationally practical because the computation

of strategies at different states and shocks can be completely decoupled. This becomes apparent when

simulating the industry according to RNOE strategies, in which NOE only gets computed (or re-solved)

along the path of visited states and aggregate shocks, as formalized in the next algorithm.

Algorithm 2 Simulating industry according to RNOE strategies from initial state (s, z)

1: t := 0, s0 := s, z0 := z
2: repeat
3: Compute NOE from initial state (st, zt) using Algorithm 1. Let (µ̃0, µ̃1, ...) and (λ̃0, λ̃1, ...) be the

NOE.
4: (µt, λt) := (µ̃0, λ̃0)
5: Simulate one period evolution of the industry from (st, zt) when firms use strategy (µt, λt) and let

st+1 be the realized state and zt+1 be the realized shock.
6: t := t+ 1
7: until t = T

In the next two sections, we provide two applications of (R)NOE. First, an empirical application to

compute an optimal subsidy for a technology adoption with network effects. The model and parameters are

set to the estimates of Ryan and Tucker (2012a). This exercise aims to showcase the usefulness of NOE in a

real-world application. The empirical setting was chosen to involve a large state-space (so that MPE cannot

be easily computed), and to emphasize the importance of transitional dynamics as opposed to steady-state

dynamics (so OE may not provide the best answer). Also, the setting intentionally involves a large number

of agents to provide a best case application for pure NOE without the need of re-solving.
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Second, we apply NOE to model transitional dynamics in markets with small numbers of firms. We

compare the transitional dynamics of NOE to those of MPE via numerical experiments, including a few

canonical oligopoly models based on Ericson and Pakes (1995). Since the number of agents we consider

is small, we also compute the NOE solution with Re-solving. We demonstrate that while in general NOE

provides good average approximations of MPE transitional dynamics, RNOE improves the approximation

point-wise, i.e., for states that are far from the industry average. Furthermore, RNOE improves the approxi-

mation to MPE in highly concentrated industries and in industries with aggregate shocks.

4 Application to Technology diffusion

We apply NOE to an empirical application due to Ryan and Tucker (2012a) (henceforth, RT), who study the

diffusion of technology in a market with network externalities and a large number of agents. In particular,

RT examines the adoption of video conferencing technology in a large multinational firm with more than

2,000 heterogeneous workers. The primary focus of their exercise is to estimate the size and heterogeneity

of the network effect and adoption cost.

A typical characteristic of network adoption models is that the agents’ optimization problem is extremely

complex. Each agent needs to compute the expected sum of discounted utility of joining the network, which

in turn depends on expectations about the future installed base. An additional complication here is that

the agents do not value the adoption of coworkers equally, but care more about adoption of some type of

coworkers than others. Thus, to correctly compute the current value of adoption, the agents need to know

the adoption states of the different coworker types and make predictions about their adoption times. With

this heterogeneity the state space becomes enormous, making exact computation of MPE impossible even

for a relatively small number of agents.

Ryan and Tucker (2012a) circumvent this difficulty by estimating the model using the two-stage estima-

tion method of Bajari et al. (2007) that does not require solving for MPE. The paper then computes a set of

seeding exercises that also do not require recomputing equilibria. Because MPE computation was infeasible,

the paper did not consider counterfactuals that perturb model primitives, such as the optimal allocation of

adoption cost subsidies.

More generally, the literature has employed several alternative methods of analyzing the network good

adoption problem (see Bramoullé et al., 2020, for the survey of the literature). The most common approach

is to use a static model with fulfilled expectations (e.g., see Katz and Shapiro, 1985). In such a model,

similarly to OE, the agents optimize against the stationary distribution of adopters. Another approach is to
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accommodate nonstationary dynamics via the assumption of myopic agents (e.g., see Mele, 2017). Finally,

Björkegren (2019) models network adoption with forward-looking agents and circumvents computational

issues by computing a full information equilibrium in which agents have perfect information about all future

periods and commit at time zero to a publicly announced future adoption time. The NOE framework, on

the other hand, allows researchers to compute equilibria with forward-looking agents and full heterogeneity,

under substantially weaker assumptions.

The RT paper is an excellent testing bed for NOE, for three reasons: (i) computing an MPE is difficult

without abstracting away much of the economically relevant information about the network topology; (ii)

the set of agents is large, and therefore, NOE behavior and dynamics should be close to those of MPE;

and (iii) computation of NOE is very simple — so simple, in fact, that the code easily fits in the published

appendix. We proceed to describe the formal RT model.

4.1 Model

Consider a continuum of agents with mass N living over an infinite, discrete-time horizon.14 Each period,

each agent decides whether to adopt a teleconferencing technology. Let µit = 1, if agent i adopts the

technology at time t, and µit = 0 otherwise.

Agents are partitioned into M = 64 discrete types. At t = 0 each agent is assigned one of persistent

typesmi and a persistent one-time adoption cost ci ∈ C drawn from a distribution Fmi . Typemi is public in-

formation and cost ci is agent’s private information. The agent’s state is given by the tuple xit = (mi, ci, ait),

where ait is the adoption status. The adoption of the technology is perpetual, that is, ait = 1, if ai,t−1 = 1

or µit = 1. There is no entry of new agents nor exit of incumbents.

We consider cut-off strategies. Under any profile of such strategies, for a given users’ type, users within

that type adopt in a sequence, such that lowest cost users adopt first and the highest cost users adopt last.In

such case, the fraction of adopters is a sufficient statistic for the cost distribution of non-adopters. We can

abstract from explicitly tracking the beliefs of agents about the distribution of non-adopters.

As in our base model, we focus on symmetric and anonymous equilibrium, so we restrict attention to

industry states that do not depend on agents’ identities. Thus motivated, with some abuse of notation we

denote the industry state as the mass of adopters of type m as st(m), for all possible types m. The industry

state is an element of the set S = [0, N1]× [0, N2]× · · · × [0, NM ], where Nm it the total number of agents

14A model with continuum of agents is a modification of our earlier model with finite number of agents. Assuming a continuum
of agents greatly simplifies the structure of beliefs. Specifically, with a continuum of agents the current number of adopters is a
sufficient statistic for the cost distribution of nonadopters.
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of type m.

In addition, there is an aggregate shock, zt, common to all agents that follows a deterministic trajectory,

reflecting common time trends and seasonality of the value of video conferencing. The tuple (st, zt) contains

the payoff relevant information of the game and fits the framework laid out in Section 3.

4.1.1 Agents’ Objective and Adoption

The agent derives the utility from making phone calls to other agents who also adopted the technology. We

denote the per-period value of using the technology as Um(s−i,t, zt). In particular, the value depends on the

mass of other adopters segmented by types, s−i,t and the aggregate shock zt.

The utility, Um, reflects that the value of adoption technology depends on the number of other adopters,

as well as on the topology of the network. For instance, a member of the Marketing department may have

larger interconnection value with other members of the same department; while a member of the Finance

team may have a large value to contact employees from Operations. The exact micro model of Um is in

Appendix B. The parameters of this model have been calibrated to the results of Ryan and Tucker (2012b)

and reflect an interdependence graph identified using revealed preferences of the agents from the empirical

data.

Agents maximize expected discounted utility given by

E

∞∑
t=s

βt−s [ai,tUm(s−i,t, zt)− µi,tci]

We consider only equilibria in cut-off adoption strategies Hence, an agent adopts the technology if the

continuation value of doing so is greater than the adoption cost, and does not adopt otherwise. That is,

µit = 1, if and only if ci ≤ c̄(xit, s−i,t, zt), where c̄(xit, s−i,t, zt) is the continuation value of adopting for

firm i at time t.

4.2 Nonstationary Oblivious Equilibrium

Consider a nonstationary strategy µ ∈ M̃ns. The strategy is of the form µt(xit). A nonstationary strategy

generates an expected path of network adoption, s̃t. For every agent typem, The sequence s̃t(m) is bounded

and increasing, thus it has a limit. Denote this limit by s̃(m).

Consider a NOE µ̃. It is easy to show that, since both {s̃t : t ≥ 0} and {zt : t ≥ 0} have a limit,

{µ̃t : t ≥ 0} must also have a limit and that this limit must be OE. Thus, every NOE of the RT model
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converges to a OE. OE of the RT model is relatively straightforward to compute and corresponds to a fulfilled

expectation static adoption problem (similar to Katz and Shapiro (1985)), in which adoption fraction for each

type m solves the following Bellman equation:

s̃(m) = NmFm(Um(s̃)/(1− β)) .

This equation is typically solved by fixed-point iteration. We compute NOE by simulated best response

iteration, which is an adaption of our general algorithm to account for the heterogeneity in the adoption

cost. Using this algorithm we can obtain counterfactual adoption paths for any set of primitives. We are

particularly interested in computing optimal adoption subsidies that generate economically desirable adop-

tion paths from an initial state in which no one has adopted. In the Appendix we describe the algorithm to

compute NOE for this model, which is around 20 lines of code.

4.3 Calibration of the Model and Subsidies

We start by calibrating our model to the estimates reported in Ryan and Tucker (2012a). The RT paper does

not report two statistics: exact population sizes for 16 of the 64 types in the data, and values of the estimated

aggregate utility shifters zt. Since we know the total number of workers, we allocate the unaccounted agents

uniformly across the 16 omitted types. To obtain zt, we use a full solution nested-fixed point calibration

procedure. We choose zt that minimizes the mean square error between the number of adopters for each t

predicted by our model and that reported in Ryan and Tucker (2012a).

We consider a practically relevant case in which the firm can commit to a type-dependent cash adoption

subsidy γ = (γ1, . . . , γ64). The firm’s objective is to maximize its payoff function G(s̃0, s̃1, . . . , s̃T ) within

a subsidy budget B. There are two practical problems for the firm when choosing the amount of the subsidy

γ: (i) Since the number of adopters is endogenous, forecasting the total cost of the subsidy for a given

per capita subsidy in nontrivial, (ii) Because of the network effects, the optimal allocation of money across

types is hard to determine. The former is a cost management issue that could be mitigated with some loss

of efficiency by stopping the subsidy once its cost reaches the budget. The latter issue, however, is more

substantive and harder to eliminate. The firm does not want to subsidize types that would adopt without the

subsidy, and wants to target influencers (types that generate large network externalities). Adoption decisions

of all types are interdependent and are determined by a series of complicated feedback loops resulting from a

rich specification of the link synergy matrix. For this reason, it is practically impossible to determine which

types to subsidize by examining the primitives of the game (link synergy matrix and adoption cost structure)
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without computing the equilibrium. Thus, in order to determine which types to subsidize, we propose that

the firm solves the equilibrium adoption game using NOE, and solves the following constrained optimization

problem:

max
γ

G(s̃1, . . . , s̃T )

s.t.
∑
m

γms̃mT ≤ B and D(γ) = 0,
(4.1)

where D(γ) are other practical constraints on the subsidy structure. Henceforth, we compute solutions to

the above problem that maximize the discounted number of adopters. Formally we set

G(s̃0, s̃1, . . . , s̃T ) =

T∑
t=0

δt
∑
m

s̃t(m)

for large enough T . The parameter δ captures the trade-off between short term adoption and long-term

adoption. If δ is close to 1 the company places more weight on long term adoption rates; and if δ is small

short-term adoption rates receive more weight. We set δ = 0.9.

Since a first-best subsidy requires us to optimize over a 64-dimensional vector γ, which is impractical,

we consider two types of second-best subsidies that we numerically optimize. First, we consider a bench-

mark cost management case in which γm = γm′ for all m and m′. Next, we consider a case where the

subsidies are optimally allocated across 4 different hierarchical functions within the company, which im-

plies that γm = γm′ if m and m′ correspond to the same hierarchical function. Even in case of a simple

uniform subsidy we need to solve the model repeatedly to obtain the counterfactual adoption paths under

various subsidies. Thus, this exercise is only possible if the model can be solved relatively quickly. To

obtain workable computation speed, we utilize NOE.

Figure 1 contains the comparison of a simple subsidy and a more complicated subsidy optimally target-

ing by hierarchical function. The simple subsidy allocates a 0.95 util15 uniform transfer for any adopter of

the network. There are four hierarchical roles within the firm: Associate (AS), Vice President (VP), Direc-

tor (DR), and Managing Director (MD). The optimal subsidy subsidizes the two middle roles: VPs by 1.96

utils, and DRs by 1.18 utils. The subsidy does not subsidize ASs and MDs.

In total, there are 2,169 potential adopters. A uniform subsidy increases adoption by 436 agents in the

short run (month 2). The targeted subsidy increases adoption by 557 clients, or 28% more than the uniform
15The RT paper does not have a price or income measure that can be used to convert utils into meaningful units such as dollars.

For reference, mean adoption costs range between -0.7 to 2.2 utils across individuals, depending on employee subtype.
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subsidy. In the long run, the uniform subsidy results in 240 more adopters, as compared to 294 more adopters

resulting from the targeted subsidy. In other words, the targeted subsidy has 23% higher effectiveness in

increasing the overall adoption than the uniform subsidy. Overall, computing targeted subsidies allows for

better targeting that delivers substantially higher short- and long-term adoption rates for the same overall

cost of the subsidy. We believe the application shows the potential for using NOE in economically relevant

settings with a large number of agents.

5 Application to Dynamic Oligopoly

This subsection contains computational experiments that examine the transitional dynamics generated by

(R)NOE in markets characterized by a small number of firms and varying levels of concentration. The

experiments have two main goals. First, we aim to compare the transitional industry paths generated by

NOE with the transitional paths generated by MPE and OE. Since OE is designed to approximate long-

run dynamics, its short-run dynamics can be far from those of MPE even if its long-run dynamics match

closely. We demonstrate this issue in several different models, and then show that the transitional dynamics

generated by NOE are more realistic and closer to those of MPE.

Our second goal is to investigate the value of re-solving in improving the modeling (relative to both

NOE and OE) of both long- and short-run industry dynamics. For example, as demonstrated in Benkard

et al. (2015), OE can fail to approximate the stationary distribution of MPE in highly concentrated industries

with an unusually high turnover of industry leaders. Also, the OE approximation may fail in the presence of

serially correlated aggregate shocks that cannot be averaged away.

5.1 Models Analyzed

We numerically analyze two structurally distinct dynamic oligopoly models from the past literature that

represent a range of potential applications: (i) a Quality-Ladder model with a differentiated products logit

demand model and Bertrand competition with investments in product quality; (ii) a homogeneous products

Cournot model with investments that reduce marginal cost. Although it would be straightforward to imple-

ment entry and exit in these models, to simplify the exposition and computation of MPE, we omit them from

our specifications. We describe the models in detail next.

QUALITY-LADDER MODEL. This price-quality competition model most closely matches the differentiated

products oligopoly models that are commonly used in empirical applications in IO and related fields.16 In
16This model closely follows Weintraub et al. (2010) that in turn is an extension of the model in Pakes and McGuire (1994).
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this model, single product firms produce products that have an endogenous quality state that can be improved

through investment. Consumer demand is modeled through a standard logit demand model. There are m

consumers in the market. In each period t, consumer j receives utility uijt from consuming the good

produced by firm i given by:

uijt = θ1 ln(xit + 1) + θ2 ln(Y − pit) + νijt , i ∈ St, j = 1, . . . ,m,

where Y is the consumer’s income, and pit is the price of the good produced by firm i. νijt are i.i.d. random

variables distributed Gumbel that represent unobserved characteristics for each consumer-good pair. There

is also an outside good that provides consumers zero utility. We assume consumers buy at most one product

each period and choose the product that maximizes utility. Under these assumptions, our demand system is

a classic logit model.

Let N(xit, pit) = exp(θ1 ln(xit + 1) + θ2 ln(Y − pit)). Then, the expected market share of each firm is

given by:

σ(xit, s−i,t, pt) =
N(xit, pit)

1 +
∑

j∈St N(xjt, pjt)
, ∀i ∈ St .

We assume that firms set prices in the spot market. If there is a constant marginal cost c, the Nash equilibrium

of the pricing game satisfies the first-order conditions,

(5.1) Y − pit + θ2(pit − c)(σ(xit, s−i,t, pt)− 1) = 0 , ∀i ∈ St .

There is a unique Nash equilibrium in pure strategies, denoted p∗t Caplin and Nalebuff (1991). Expected

profits are given by:

πm(xit, s−i,t) = mσ(xit, s−i,t, p
∗
t )(p

∗
it − c) , ∀i ∈ St

where m is the market size.

Firms can also invest ι ≥ 0 in order to improve their product quality over time. A firm’s investment

is successful with probability aι
1+aι , in which case the quality of its product increases by one level. The

firm’s product also depreciates one quality level at random with probability δ, independently each period.

Combining the investment and depreciation processes, it follows that the transition probabilities for a firm
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in state x that does not exit and invests ι are given by:

P
[
xi,t+1

∣∣∣xit = x, ι
]

=



(1−δ)aι
1+aι if xi,t+1 = x+ 1

(1−δ)+δaι
1+aι if xi,t+1 = x

δ
1+aι if xi,t+1 = x− 1 .

QUANTITY-COST COMPETITION. As we show below, the Quality-Ladder model generates dynamics that

are fairly straightforwardly modeled using just OE and NOE. Thus, we also consider an additional model

that better highlights the weaknesses of OE, and allows us to explore both the value and the limits of NOE

and RNOE. As shown in Benkard et al. (2015), the quantity-cost model generates highly concentrated,

near monopoly markets that also have a fringe of smaller firms, and a significant turnover of leading firms,

features that are difficult for OE to replicate.

Consider an industry with an homogeneous product and quantity setting, for which the state of each firm

represents its marginal cost of production. The industry has a linear inverse demand function

P (qt) = m1 − σ
∑
i

qit ,

where qit is the quantity produced by firm i at time period t. The marginal cost for firm i in state xit is

MC(xit) = γ0 exp(−(γ1xit − γ2)).

With this specification, we can generate highly concentrated markets. However, in periods of high

concentration, lagging firms stop producing altogether, leading to a monopoly. Thus, it is difficult to generate

highly concentrated markets in which small firms continue to produce. Monopoly markets are close to single

agent problems, thus they are well modeled by OE, and less useful in our context. To generate concentrated

oligopoly markets, we take a shortcut and assume that there is also a second market that always yields

m2 + αxit of profits. One can think of the first market as representing the “national” market. All firms

compete in quantities in this market. The second market may represent a “local” market. Each firm captures

its local market entirely regardless of the national market structure. The second market provides small firms

with some market share that incentivizes investment even when there is a very efficient large firm. Period
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profits for firm i at time period t in state xit are given by

Π(q−i,t, xit|s−i,t) = max
qit
{P (qt)qit −MC(xit)qit +m2 + α log(xit)}

Firms set quantities simultaneously conditioning on the observed state, and the spot market is assumed

to be in static Nash equilibrium. In this model, investment improves the state by reducing marginal cost.

Transitions are modeled as in the Quality-Ladder model above.

5.2 Comparison of OE, (R)NOE and MPE

This section compares the long-run and transitional dynamics of OE, (R)NOE, and MPE in the classic dy-

namic oligopoly models described above. Both models are capable of generating a wide range of empirically

relevant industry structures. The critical parameter in both models is the cost of investment. As this cost

increases, the industry moves between symmetric oligopoly, in which most firms occupy the upper portion

of the state space, to highly concentrated near-monopoly markets, in which all but one firm are in the lowest

industry state. Because of the nature of the tails of the extreme value distribution, the logit Quality-Ladder

model tends to generate less extreme industry structures than the Quantity-Cost model, with milder dif-

ferences in profits across states. The Quantity-Cost model can generate industries with arbitrary levels of

concentration. This model enables us to study some extreme near-monopoly industry configurations that are

arguably not very empirically relevant, and for which the dynamic oligopoly framework may not always be

the most suitable modeling choice. Nevertheless, it is informative to analyze such extreme cases in order to

explore the limits of the proposed modeling techniques.

For both models, we present transitional equilibrium dynamics towards the equilibrium stationary dis-

tribution starting from an industry state in which all firms are in the lowest state. We think of this as

representing the time path of a new industry starting from its inception, far from its long run distribution of

states. Because we compute NOE that converges to OE, its long-run dynamics are the same as OE. However,

its short run dynamics are often very different to those of OE. Because RNOE re-solves every period, its

long-run dynamics need not be the same as OE and NOE. We first investigate the short-run dynamics of

NOE and RNOE in cases where OE provides an excellent long-run approximation to MPE. We then move

on to the cases where OE’s long-run dynamics are less realistic.

For both models, we assume that there are 8 firms and individual states are given by {1, ..., 8}. We

compare the simulated trajectories of consumer surplus, producer surplus, and expected total investment

across the proposed equilibrium concepts. For each simulated trajectory r, we set the initial state, sr0 =
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{8, 0, 0, 0, 0, 0, 0, 0}. We use similar parameters parameter values as in Benkard et al. (2015), see Table

1. The parameters range from values that generate typical industry dynamics, to the values that generate

atypical dynamics i.e., abnormally high rate of industry turnover for which OE fails; see extensive discussion

in Benkard et al. 2015.

To obtain R trajectory draws,17 denoted by {srt}Tt=0, we start at st0 and simulate the industry for T =

100 periods using the corresponding equilibrium strategy. NOE is computed using backward induction from

OE with T̄ = 100. For example, in the case of MPE, we apply full Markov strategies at each current state

sMPE
rt to obtain the draw of the next industry state sMPE

r,t+1 . Similarly, for OE, we apply the OE strategy to

obtain the next industry state. For the case of NOE, we compute a NOE strategy starting from the initial

state s0, {µ̃t}Tt=0 and apply this NOE strategy to simulate the transitions from sNOErt to sNOEr,t+1 . Finally, for

RNOE, we re-solve for a new NOE starting at srt and use µ̃0 from the new NOE to obtain the next state.

In this case, we never use µ̃t for t > 0; instead, we re-solve for new NOE by changing the initial state as

t increases. To increase the numerical efficiency, we store NOE(s) for various initial states in the memory

and pull from memory/re-solve as necessary.

5.2.1 Quality-Ladder Model

Figure 2 compares average industry statistics between OE and (R)NOE for an industry with low investment

cost. In the stationary distribution under MPE, the industry has an average of 5.2 firms in the upper portion

of the state space (states 5-8) and the industry is relatively competitive with a 1,463 Herfindahl-Hirschman

Index (HHI). All of the equilibrium concepts closely match MPE in the long run. In the short run, we see

that OE produces lower equilibrium investment than MPE. This lower investment is unsurprising since OE

responds to the average long run industry state rather than the true realized short-run industry state. In MPE,

in early periods firms know that there are no large firms, so they are eager to invest a lot to capture market

share. In OE, even in the initial periods firms optimize against the long-run distribution that prescribes 5.2

large firms, and therefore they underinvest in the short run. NOE mostly corrects this bias. In NOE, firms

optimize against a mean field approximation of the industry evolution over time, and invest almost the same

as in MPE. RNOE, NOE, and MPE are almost indistinguishable.

Figure 3 examines an industry with a larger investment cost. In this industry, there are 3.1 firms in the

upper portion of the state space, and the HHI is 1,743. In this more concentrated industry, OE and NOE now

slightly differ from MPE in the long run. Resolving corrects this issue and RNOE is virtually identical to
17R, with and without re-solving, is chosen to obtain a given precision of the industry statistics, at most 10%-wide 95% confi-

dence interval, but not less than 2, 000 draws.
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MPE in the long run. OE does not perform well in the short run for the same reasons as above. NOE is still

massively better than OE in the short run, but even in the short run it is slightly hampered by the fact that it

converges to OE in the long run, and OE is beginning to fail slightly. Resolving solves both of these issues

and RNOE is numerically indistinguishable from MPE in both the short and long runs.

We explore this point further by considering an industry with an even larger investment cost, depicted in

Figure 4. This industry has 1.5 firms in the upper portion of the state space, and an HHI of approximately

1,900. Note that even with extreme product quality differences the logit demand model cannot endoge-

nously generate high HHI’s in this dynamic model. Below we use the other model to explore markets with

extreme HHI’s. For this industry, OE, and thus NOE, produce approximately 10% long-run error in average

consumer surplus and between 3% and 5% error in producer surplus and average investment. Again, the

short-run approximation error of NOE is similar to the long-run error. RNOE educes the short- and long-run

approximation errors in consumer and producer surplus by over 30%, though some small differences re-

main. RNOE delivers numerically negligible approximation error in average investment in all but the initial

periods.

The Quality-Ladder model is generally incapable of producing very concentrated and numerically stable

industries because of the fat tails in the logit model. To investigate the limits of (R)NOE in more highly

concentrated industries, we now consider the Quantity-Cost model.

5.2.2 Quantity-Cost Model

In this subsection, we examine the Quantity-Cost model. The comparison of short-run dynamics for the

industry with low investment cost is presented in Figure 5. This industry has an average of 4.5 firms in the

upper part of the state space and an HHI of 2, 230 in the MPE long-run. Importantly, this industry has a

higher concentration index than any of the parameterizations of the Quality-Ladder model, despite having on

average as many as 4.5 firms in the upper portion of the state space. A high HHI is more natural in this model

because firms in the lower portion of the state space nearly shut down when more efficient competitors can

price below their marginal cost. Despite the industry being more concentrated, OE is essentially identical to

MPE in the long run here. As in the Quality-Ladder model, since OE is close to MPE in the long run, NOE

is also close to MPE in the short run.

We omit the intermediate investment cost case (see the online appendix, Figure 1) as it is similar to the

low investment cost case but with a slight difference for OE and NOE in the long run, and instead move

to an extremely concentrated industry, shown in Figure 6. This industry represents a near monopoly, with
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0.93 firms in the upper portion of the state and an HHI of 9,033. Importantly, this industry has very unique

dynamics because the identity of the monopoly firm periodically changes, and it is important for firms to

identify these key moments when they may be able to take over the market. It is hard to imagine a more

challenging industry for OE and NOE. It also seems unlikely that this type of model would be used to study

such an industry in an empirical setting. Nevertheless it is useful to look at how the various models behave

in such an extreme environment. For this industry, OE and NOE are around 10% different from MPE in the

long run. Similarly to before, the short run performance of NOE is hampered when OE does not do well

in the long run. In contrast, RNOE mostly solves these issues, and is within about 2% of MPE in both the

short and long runs in all three metrics.

5.2.3 Aggregate shocks

We now extend the Quality-Ladder model to accommodate aggregate shocks. Specifically, we allow for

three demand states that change the market size: low, medium, and high. The medium state is a baseline

case that has the same parameter levels as the baseline Quality-Ladder model. The low state results in 50%

lower than baseline demand, and the high state results in 50% higher than baseline demand. The transition

matrix between states is given by: 
0.8 0.2 0.0

0.1 0.8 0.1

0.0 0.2 0.8

 .

The stationary distribution assigns 0.5 probability to the medium state and 0.25 to the low and the high state.

Expected profits in the stationary distribution are equal to the baseline profits at the medium state.18

We consider two extreme cases of low and high investment costs. The comparison of different equilibria

for different values of starting aggregate shock and low investment cost is presented in Figures 7. In this

case, OE performs well in the long run, and both NOE and RNOE perform well in the short and long run.

Consumer surplus and producer surplus show similar patterns (see Section 2 in the Online Appendix).

To investigate a more complicated case where OE fails to provide accurate long-run approximations, we

consider a case of a more concentrated industry with a higher investment cost. The results are presented

in Figure 8. We find that the long-run gap between OE and MPE is large. NOE works well in the first

few periods but is eventually hampered by the poor long run performance of OE. In comparison, re-solving
18In this exercise, firms track only the average value of the aggregate shock in OE and NOE. It is possible to compute versions

of OE and NOE in which firms track the exact value of the aggregate in addition to their state. These implementations, while
computationally more expensive, would better approximate MPE.
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allows firms to use an updated policy every time the value of the shock changes, which delivers an excellent

approximation to MPE. Intuitively, RNOE is piecing together the very short-run dynamics of NOE, where

NOE does perform well. We obtain similar results with respect to the performance of RNOE in markets

with aggregate shocks for both Cournot models.

5.2.4 Equilibrium distribution of investment paths

We have seen that RNOE matches MPE well when averaging over firms and states. It is reasonable to ask

if this is the case because errors across different states at a given period average out or because RNOE

approximates investment levels for individual states well. With this motivation, this subsection considers

an error metric that captures point-wise sample-path differences, that is, a mean absolute difference (MAD)

over states.

Formally, RNOE and MPE investment levels for each t are random variables due to the variability of

the states. MADt is defined as E[|
∑

i ιit −
∑

i ι̃it|]. The expectation is taken with respect to the MPE

distribution of states (st, zt) conditional on (s0, z0).

We apply MAD to the Quality-Ladder model to see if this metric reveals differences in distributions

that are potentially hidden by analyzing only the average investment across firms. The results are presented

in Figure 9. Recall that the differences in means between NOE and MPE were negligible for the Quality-

Ladder model. In contrast, we find that the MAD difference between NOE and MPE investment increases

over time and asymptotes to approximately 15%. In other words, NOE (and OE) investment is on average

15% different from MPE investment point-wise, across firms, but the differences cancel out in expectation.

RNOE delivers significant point-wise improvements. MAD with re-solving starts at 5% at t = 0 and

declines to less than 2% of MPE investment over time.

5.3 Summary of findings

We now summarize the main findings from the numerical experiments. The OE model, while often aligning

closely with the MPE in the long run, often diverges significantly from MPE in the short-run. NOE provides

a much better tool for analyzing short run dynamics.

In addition, we find that when OE is close to MPE in the long run, NOE is typically also close to MPE

in the short run. This holds true especially in industries characterized by low- to medium-high concentration

levels. In such industries, NOE emerges as a viable substitute for MPE, delivering comparable short-run

dynamics but allowing for richer and more realistic models. NOE is also simple to program and compute
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even in complex models.

In industries with particularly high concentration levels or in the presence of aggregate shocks, OE often

deviates from MPE in important ways in the long run, and NOE similarly tends to deviate from MPE in

the short run. In such cases, the researchers should consider re-solving. We found that RNOE performed

well in essentially all the cases considered, and is also closer to MPE point-wise. Thus, RNOE would be

particularly useful when the research objective includes not just average short-term outcomes, but also the

distribution of outcomes.

6 Conclusion

Recent decades have witnessed a surge in data availability and computational power, enabling the modeling

and estimation of complex game-theoretical systems that closely approximate individual and firm decision-

making. The parameters estimated from these models are often used to generate counterfactual predictions

intended to inform managers and policymakers. However, the solution concepts currently applied to these

complex models are not very tractable. Consequently, even if a realistic version of the model can be formu-

lated and estimated using observed data, the model often needs to be further simplified to obtain counterfac-

tual results. These simplifications limit the application of counterfactuals to smaller markets or unrealistic

synthetic versions of larger markets, raising two critical questions: How much insight is lost when the mod-

els are simplified? More fundamentally, are the current solution concepts, which are intractable for academic

researchers operating at the frontier, even well-suited to reflect real world firm behavior?

Dynamic games are an example in which complexity increases quickly with the richness of the model.

In order to capture the economic realities of empirical applications, it may be necessary to include features

like firm heterogeneity, multi-product firms, nonstationarity, and aggregate shocks. However, the dimension

of the model’s state space grows quickly with the number of players and the number of states per player, and

this causes the canonical model of Markov Perfect Equilibrium (MPE) to become intractable. One possible

solution is to apply a long-run mean-field approximation, which performs well in approximating long-run

behavior of games with enough players, but may be inaccurate in the short run, or if the number of players

is small.

This paper proposes a new solution concept called Nonstationary Oblivious Equilibrium (NOE), which

has two main objectives. First, it is a computationally attractive solution that delivers short-run paths close to

or even numerically indistinguishable from MPE, even if the number of players is small. We show that NOE

typically works well for short run dynamics whenever a mean field approximation (such as OE) works well

32



for long run dynamics. NOE allows researchers to use a model for counterfactuals that does not compromise

the complexity of the state space.

Second, NOE, and especially its re-solving variant, offers a behaviorally attractive model of firm con-

duct. Although theoretically attractive, MPE requires an extreme level of rationality that seems likely to be

beyond the computational and reasoning capacity of most firms. In contrast, NOE and RNOE are based on

concepts from Operations Research that have been frequently implemented in real firms and markets.

RNOE is grounded in the simple idea that, when firms are unable to compute complete solutions to

their optimization problems, they apply approximations such as mean field approximations. However, they

do not stick to these approximations forever. They update their approximations when the realized state of

the world significantly deviates from the one assumed when computing the initial solution. This approach

breaks down a large computational problem into a series of simple ones, and is orders of magnitude less

computationally intensive than computing MPE.

We conclude that (R)NOE appears to offer an attractive behavioral model that mimics real-world decision-

making of firms while also closely matching MPE dynamics. Notably, RNOE provides a computationally

feasible method for modeling dynamics in concentrated oligopolistic industries of particular interest in IO.
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A Proof of Theorem 3.1

A.1 Preliminaries

To simplify notation we embed the aggregate shock state into the industry state, that is, in an abuse of nota-

tion, s ∈ S×Z . We also abuse notation to consider a restricted state space S =
{
s ∈ <|X |+1

+

∣∣∣∑ s(x) < N
}

.

Under our assumptions, this restriction is done with out loss of generality for N large enough. We en-

dow the set S with a norm. We define a set S∞ = {(s0, s1, s2, ...) : st ∈ S; for which there exists s ∈

S, limt→∞ st = s}, endowed with a metric compatible with the product topology. The elements of S∞ are

denoted by S = {s0, s1, ...}. We also endow M̃ and Λ with norms and endow M̂ns and Λ̂ns with a metric

compatible with the product topology.

We define a new set of strategiesMS : X × S∞ → I × [0, supx,s,ι π(x, s, ι)/(1 − β) + φ]. For all

strategies µ ∈ MS , individual states x ∈ X , and sequence of industry states S ∈ S∞, we define a new

value function:

V (x, S|µ) = Eµ

[
τi∑
k=0

βk (π(xik, sk, ιik) + βτi−tφi,τi

∣∣∣xi0 = x

]
.

Let V (x, S) = supµ∈MS V (x, S|µ), ∀x ∈ X , S ∈ S∞. Note that the state space of this dynamic pro-

gramming problem is uncountable. However, because single-period profits and expected sell-off value are

bounded, the supremum can always be attained simultaneously for all x and S by a common strategy µ

(Bertsekas, 2001).

We define a translation operatorG : S∞ → S∞, such that,G(S) = {s1, s2, ...} and define the following

Bellman operator for a value function V defined over X × S∞:

(A.1)

TV (x, S) = π(x, s0) + E

[
max

{
φit, sup

ι∈I
(−c(ι, x, s0) + βE [V (xi,t+1, G(S))|xit = x, ιit = ι])

}]
,

for all x ∈ X and s ∈ S∞. Note that the dependence of the cost function on s0 encodes its potential

dependence on z0. The Bellman operator greedily optimizes investment and the exit rule with respect to

the value function V . Accordingly, the greedy investment and cut-off exit strategies with respect to V ,

ι : X × S∞ → I and ρ : X × S∞ → [0, supx,s,ι π(x, s, ι)/(1− β) + φ], are respectively given by:

ι(x, S) = argmax
ι∈I

(
−c(ι, x, s0) + βE

[
V (xi,t+1, G(S))|xit = x, ιit = ι

])
,(A.2)

ρ(x, S) = max
ι∈I

(
−c(ι, x, s0) + βE

[
V (xi,t+1, G(S))|xit = x, ιit = ι

])
.(A.3)
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Under our assumptions, these strategies exist and are unique. We denote µ(x, S) = (ι(x, S), ρ(x, S)).

Finally, we define the following two operators. First, for all µ ∈ M̂ns and λ ∈ Λ̂ns we define the

operator H1 as:

H1(µ, λ) = ({st}∞t=0, λ) ,

where {st}∞t=1 is determined by equations (3.1), (3.2), and (3.3), given (µ, λ) and the initial state s0. The

first component of the operator H1 maps an initial state, and sequence of strategies and entry rates into a

sequence of expected states. The second component applies the identity to the sequence of entry rates.

Second, for all S ∈ S∞ and λ ∈ Λ̂ns, we define the following operator:

H2(S, λ) =
{
{µ(x,Gt(S))}x∈X ,max{0,min{λt + βV (xe, Gt+1(S))− κ, λ}}

}∞
t=0

.

The operator H2 maps a sequence of states S and entry rates λ into a sequence of optimal strategies and

updated entry rates.

A.2 Outline of Proof

We prove Theorem 3.1 at the end of the section by leveraging the lemmas we prove in Section A.3. We

provide an outline here. For µ ∈ M̂ns and λ ∈ Λ̂ns, we define the operator H(µ, λ) = H2 ◦H1(µ, λ). It

is simple to verify tht that a fixed point of H is a NOE. The proof uses the Brouwer-Schauder-Tychonoff’s

theorem (Aliprantis and Border, 2006) to show that a fixed point of H in fact exists in M̂ns × Λ̂ns. The

main steps of the proof are the following:

1. Prove that H1 is a continuous operator (Lemma A.1).

2. Prove that H2 is a continuous operator (Lemma A.3).

3. Prove that H2 ◦H1 maps elements from M̂ns × Λ̂ns into itself (Lemmas A.1 and A.3 together).

4. Show that M̂ns × Λ̂ns is compact.

5. Show that if NOE strategies and entry rates converge as time progresses, they converge to OE strate-

gies and entry rates.

A.3 Lemmas

Lemma A.1. The operator H1 maps elements from M̂ns × Λ̂ns into S∞ × Λ̂ns and is continuous.
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Proof. Consider (µ, λ) ∈ M̂ns × Λ̂ns with limit (µ̃, λ̃). Let st be the expected state at time t given by

the recursions (3.1), (3.2), and (3.3). Because for each t the transition kernels are continuous functions of

strategies {µi}ti=0, st is continuous in µ for all t.

Now let us show that {st}∞t=0 is a converging sequence. Note that because profits are bounded and φit

has support in <+, there is a probability uniformly bounded away from zero over all strategies µ ∈ M̂ns,

states x ∈ X , and time periods t ∈ N, of exiting the industry at each time. Therefore, for all µ ∈ M̂ns,

supt≥0 σ (Pµt) < 1, where σ(P ) is the spectral radius of the matrix P .

Let s̃t be the expected state of the industry at time period t under oblivious strategy and entry rate µ̃ and

λ̃, starting from an empty industry and the aggregate shock invariant distribution. Because supt≥0 σ (Pµ̃) <

1, s̃t converges.

Again, because supt≥0 σ (Pµt) < 1 and transition kernels are continuous, it is simple to show that

limt→∞ ‖st − s̃t‖ = 0, because transient behavior vanishes. These two limits together imply that {st}∞t=0

converges, which completes the proof.

Now, we show that the operator H2 is continuos. First, we show a preliminary lemma.

Lemma A.2. The value function V is the unique solution of Bellman’s equation V = TV within the class

of bounded functions. Moreover, V and µ are continuous over X × S∞.

Proof. Because single-period profits, investments, and expected sell-off value are bounded, V is the unique

solution of Bellman’s equation V = TV within the class of bounded functions (Bertsekas, 2001). We use

the contraction mapping theorem to prove that, additionally, V is continuous In particular, we show that T

has a fixed point within the class of bounded and continuous functions. Because the fixed point is V , V is

continuous.

LetCb(X×S∞,<) be the space of continuous and bounded real-valued functions with domainX×S∞.

Recall that Cb(X × S∞,<) is a complete metric space with the metric defined by the supremum norm

(Marsden and Hoffman, 1993). Also, recall that T is a contraction in the supremum norm because β < 1

(Bertsekas, 2001). Now, we show that T maps elements from Cb(X × S∞,<) into Cb(X × S∞,<).

Take a function V ∈ Cb(X × S∞,<). By definition (A.1)

TV (x, S) = π(x, s0) + E

[
max

{
φit, sup

ι∈I
(−c(ι, x, s0) + βE [V (xi,t+1, G(S))|xit = x, ιit = ι])

}]
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The operator G is trivially continuous. The cost function, the value function V , and the transition kernel

are continuous by assumption. The random variable φit is absolutely continuous. Moreover, ι is optimized

over a compact space. By Berge’s Maximum Theorem, TV (x, S) is continuous. Furthermore, TV is

bounded because profits, investment costs, and expected sell-off value are uniformly bounded over all states.

Therefore, T maps elements from Cb(X × S∞,<) into Cb(X × S∞,<).

Using the contraction mapping theorem (Marsden and Hoffman, 1993), we conclude that T has a fixed

point among the class of continuous and bounded functions, therefore, V is continous. Using Berge’s

Maximum Theorem again, we conclude that ι and ρ are also continuous.

Lemma A.3. The operator H2 maps elements from S∞ × Λ̂ns into M̂ns × Λ̂ns, and is continuous.

Proof. By Lemma A.2 and because the operator G is continous, for each t ≥ 0,{
{µ(x,Gt(S))}x∈X ,max{0,min{λt + βV (xe, Gt+1(S))− κ, λ}}

}
is continous in (S, λ). Hence, H2 is

continuous.

Now, limt→∞G
t(S) = {s, s, s, ...}, for some s ∈ S, because S ∈ S∞. Hence, using the continuity

of µ (Lemma A.2), limt→∞{µ(x,Gt(S))}x∈X = µ̃, for some µ̃ ∈ M̃. By a similar argument, the second

component of H2 also converges. Hence, H2 maps elements from S∞ × Λ̂ns into M̂ns × Λ̂ns.

A.4 Proof Theorem 3.1

Proof. Because the range of µ ∈ M̃ and λ ∈ M̃ are bounded, by Tychonoff Theorem (Royden, 1988),

M̂ns×Λ̂ns is a compact set with the product topology. It is also a convex set and a subset of a locally convex

Haussdorff space.By Lemmas A.1 and A.3, H is a continuos operator that maps elements from M̂ns× Λ̂ns

into itself. Hence, by Brouwer-Schauder-Tychonoff’ theorem, there exists a fixed point (µ, λ) of H in the

set M̂ns × Λ̂ns. The fixed point is a NOE, s.t. for all x, limt→∞ µt(x) = µ̃(x) and limt→∞ λt = λ̃.

To finish the proof we show that (µ̃, λ̃) ∈M×Λ is an OE. By the argument in the proof of Lemma A.1,

the sequence S in the first component ofH1(µ, λ) converges to s̃, the long-run expected state under oblivious

strategy and entry rate (µ̃, λ̃). Note that A.3, µt(·) = µ(·, Gt(S)). Taking limt→∞, using the fact that

limt→∞G
t(S) = {s̃, s̃, ...}, and that µ is continuous (Lemma A.2), we conclude that µ̃(·) is an OE strategy.

Because V is continuous (Lemma A.2), the associated OE value function is V (x, {s̃, s̃, ...}). Because λ is a

fixed point ofH and taking limt→∞, if λ̃ ∈ (0, λ), then βV (xe, {s̃, s̃, ...}) = κ. If V (xe, {s̃, s̃, ...})−κ < 0,

then λ̃ = 0. Similarly, if V (xe, {s̃, s̃, ...}) − κ > 0, then λ̃ = λ. Hence, λ̃ is an OE entry rate. The result

follows.
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B Technology adoption: Single-period payoffs

Suppose that agent i adopts the technology. Denote by s−i,t the number of other adopters, which is a vector

of natural numbers. The agent derives the utility from making phone calls to other agents that also adopted,

denoted by a set A(s−i,t). After making k − 1 calls, the users decide if to make an additional k-th call and

who to call. The utility of the next phone call to each potential recipient j ∈ A(s−i,t) is given by a vector of

values

ui,j,k,t = γij − θ′3ηikt + θ4(k − 1) + zt + εijkt.

The utility is composed of three parts: the static connection utility γij , a component depending on previous

phone calls in a sequence −θ3ηikt + θ4(k − 1), and the utility shock zt + εijkt.

The γij measures the link synergy between users i and j that depends on the types mi and mj . The

values γij are given by a 64 × 64 matrix, summarizing the network topology. The term ηikt denotes the

vector denoting number of users of the same type called in the previous k− 1 calls. The expression −θ′3ηikt
represents the notion that users may get diminishing returns by repeatedly calling the same group of employ-

ees. The term θ4(k− 1) shifts the utility down linearly in the number of calls, capturing overall diminishing

returns of using the video-conferencing technology. The term εijkt is an idiosyncratic shock to the value of

calling user j as k−th call in the sequence. The outside option of not calling is set to zero.

For each period, the users start with an empty call sequence and add calls as long as and incremental

utility of the additional call is greater than zero. The length of the sequence is determined as:

(B.1) K = min{k ∈ N : max
j∈A(s−i,t)

ui,j,k,t < 0} − 1

Users are myopic when considering calls and myopically add the call of the most current utility, until the

value of the best additional call is negative (see RT for the discussion of this assumption). The addition of

marginal adopters affects the utility of the calling sequence in two ways: (i) the extra adopter can be of a

type that previously did not exist in the network, which allows new connection synergies γij to be realized;

(ii) each extra adopter generates additional draw of εijkt, which increases the length of the calling sequence.

Denote a chosen set of phone calls by user i and time t as Ωit. The expected per-period utility of adoption

is given by

U(s−i,t, zt) = EΩit

K∑
k=1

ui,jk,k,t ,

where K is the total number of calls in the sequence Ωit. The expectation is taken over possible random
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calling sequences.

The above discussion follows the original RT model for which the number of agents is finite. Our model

is a variation with the continuum of agents, so we extend the utility function to the set S . We apply a simple

linear interpolation by setting U(s−i,t, zt) = EUit(s
′
−i,t, zt). Each element s′j,t of s′−i,t is a IID Bernoulli

random variable that obtains dsj,te with probability sj,t−bsj,tc, and bsj,tc otherwise. The operators d·e and

b·c and ceiling and floor functions, respectively.

We assume that limt→∞ zt = z <∞, and denote the limit of the utility function by

Ūi = lim
t→∞

U(s−i,t, zt).

The limit exists because s−i,t is increasing in t, U is increasing in s−i,t, and U is bounded from above (by

the full adoption value).

C Code for RT model

C.1 Oblivious Equilibrium
n = 1

while(tol>1e-6)

[u K] = profit(stilde);

Vtilde = u/(1-beta);

for j=1:64

stilde_new(j)=

N(j)*normcdf(Vtilde(j),mu(j),sigma(j));

end

tol=norm(stilde_new-stilde);

stilde=stilde+(stilde_new-stilde)/(nˆ0.5+1);

end

C.2 Nonstationary OE
while(norm(stilde_noe-stilde_noe_new)>1e-9)

% Value of adoption

Va(T,:)=U(T,:)/(1-beta);

for t=T-1:-1:1

Va(t,:)=profit(stilde_noe(t,:))+beta*Va(t+1,:);

end

stilde_noe_new=zeros(T+1,M);

% Reseed the pseudo random numbers

randn('seed',9077984732);

% Simulate adoption shares for each type

for m=1:M

for r=1:R
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% Value of waiting

Vwait=zeros(T+1,1);

% Draw adoption cost

F=mu(m)+sigma(m)*randn;

for t=T:-1:1

% Adopt at t if not adopted before t?

[Vwait(t) a(t)]=max([Va(t,m)-F beta*Vwait(t+1)]);

end

% Determine earliest adoption date

at=find(a==1,1);

% Adoption is implemented next period

if(˜isempty(at))

stilde_noe_new(at+1:T,m)=stilde_noe_new(at+1:T,m)+1;

end

end

end

stilde_noe_new=(stilde_noe_new/R);

end

D Tables and Figures
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Figure 1: Comparison of uniform feasible subsidy and optimal subsidy.
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Quality Ladder Cost Competition
Market size (M) 100.0 200.0

Demand slope (σ) - 10.0
Marginal cost (γ0) - 1.0
Marginal cost (γ1) - 0.50
Marginal cost (γ2) - 5.0

Fixed cost (F) - 0.0
Second demand (m2) - 5.0

Second demand quality slope (α) - 75.0
Income (Y) 1.0 -

Quality sensitivity (θ1) 0.8 -
Price sensitivity (θ2) 0.5 -
State multiplier (ψ) 1.0 -

Marginal cost 0.5 -
Investment effectiveness 3 1
Depreciation probability 0.2 0.4

Investment cost [8-15] [50-155]
Discount factor 0.9 0.9
States per firm 8 8

Table 1: Parameters for numerical simulations
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Figure 2: Comparison of the dynamics in predicted consumer surplus, producer surplus and aver-
age investment: Quality-Ladder model (low investment cost).
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Figure 3: Comparison of the dynamics in predicted consumer surplus, producer surplus and aver-
age investment: Quality-Ladder model (moderate investment cost).
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Figure 4: Comparison of the dynamics in predicted consumer surplus, producer surplus and aver-
age investment: Quality-Ladder model (high investment cost).
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Figure 5: Comparison of the dynamics in predicted consumer surplus, producer surplus and aver-
age investment: Quantity-Cost competition (low investment cost).
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Figure 6: Comparison of the dynamics in predicted consumer surplus, producer surplus and aver-
age investment: Quantity-Cost competition (high investment cost).
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Figure 7: Comparison of the dynamics in average investment: Quality-Ladder model with aggre-
gate shocks (low investment cost). The panels show low, medium and high value of the shock at
t = 0, respectively.
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Figure 8: Comparison of the dynamics in average investment: Quality-Ladder model with aggre-
gate shocks (high investment cost). The panels show low, medium and high value of the shock at
t = 0, respectively.
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Figure 9: Average absolute deviation error: Quality-Ladder model (low investment cost)
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