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Abstract

We study users’ responses to sponsored-search advertising using consumer-level data from

Microsoft’s Live AdCenter distributed in the “Beyond Search” initiative. We introduce a dy-

namic model of utility-maximizing users, which quantifies user experience based on their revealed

preferences, and predicts user responses to counterfactual ad placements. In the model, each user

chooses clicks sequentially to maximize his expected utility with incomplete information about

the quality of advertising. We estimate the substitutability of ads in users’ utility function, the

fixed effects of different ads and positions, as well as position-specific priors about quality. To

match the clicking patterns in the individual-level data, we allow rich user-level, unobserved, per-

sistent heterogeneity. We find substantial substitutability of ads, which generates large negative

externalities. Specifically, 51% more clicks would occur in a hypothetical world in which each

ad faces no competition. Moreover, our simulations indicate that clickthrough-optimal match-

ing of ads to positions increases clickthrough rate by 23%, and user-optimal matching increases

user welfare by 27%. Targeting ad placement to specific users could raise user welfare by 69%.

Finally, user welfare could be raised by 1.6% if users had full information about the relevance of

ads before they click on the link.
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1 Introduction

Over the past decade, the Internet has become the dominant channel for consumer information

about goods and services. A substantial fraction of this information is provided through Internet

advertising. In 2007, Internet advertising revenues grew 26% to reach $21.2 billion, according

to the Internet Advertising Revenue Report, published by the Interactive Advertising Bureau and

PricewaterhouseCoopers LLP.1

In order to gain understanding of the online advertising market, compare alternative market

structures and designs, and examine their welfare effects, it is important to understand the behavior

of consumers in this market. Our paper takes a step in this direction, focusing on search advertising.

Search advertising is performed by displaying a set of sponsored links accompanying results of

consumers’ Internet search queries. This form of advertising accounts for 41% of total Internet

advertising revenues and is viewed as the most effective because of its precise targeting. In particular,

a consumer’s search string reveals a great deal about the products that the consumer is likely to

be interested in; therefore, he can be shown only relevant ads, which in turn induce him to click.

Although search advertising has recently received a lot of attention, researchers know little about

consumer behavior in this market. This study contributes to the literature by analyzing consumer

demand for sponsored ads.

Existing papers on search advertising postulate simple and restrictive models of user behavior.

For example, Edelman, Ostrovsky, and Schwarz (2007) (henceforth OES) propose a model that

assumes that the clickthrough rate (henceforth CTR) for a given ad in a given position is a product

of an ad and position-specific effect, and does not depend on other ads that are displayed in the

other positions. The EOS and its extensions were used in numerous studies, for example, Varian

(2006), Edelman and Ostrovsky (2007), Yenmez (2009), Gomes and Sweeney (2009), Edelman and

Schwarz (2010), Katona and Sarvary (2010) and Yao and Mela (2011). Another frequently used

framework is a “cascade model” (Craswell, Zoeter, Taylor, and Ramsey (2008), Papadimitriou and

Zhang (2008)). In this model users consider the ads sequentially from top to bottom, deciding

whether to click on the current ad and whether to continue clicking with ad-specific probabilities.

These restrictive models have not been compared with actual user behavior. Also, as these models

have not been derived from utility-maximizing user behavior, they could not be used to evaluate

user welfare.

1http://www.scribd.com/doc/4787183/Internet-advertising-revenue-report-for-2007
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This paper offers the first empirical investigation of user response to sponsored-search adver-

tising that is based on a structural model of utility-maximizing user behavior. One advantage of

a structural model over reduced-form models (see Dupret and Piwowarski (2008)) is that once the

model’s parameters are estimated we can use the model to predict user behavior for all conceivable

counterfactual ad impressions. Another advantage of the model is that it quantifies the user expe-

rience on a sponsored-search impression as the user’s expected utility. Importantly, this utility is

estimated directly from the preferences of actual users as revealed by their clicking behavior, rather

than from the judgments of disinterested experts (see Carterette and Bennett (2008)). Improving

user experience is crucial for the survival and growth of an Internet platform, and our model can

be used as a guide toward that goal.

Our dataset offers a selection of advertising impressions and user clicking behavior on Microsoft’s

Live Search advertising engine. The data contain a random sample of search sessions between

August 10 and November 1, 2007. In each session, the user entered a search string and was then

shown organic search results accompanied by advertisements in a form of sponsored links. An

advertising impression is an ordered list of sponsored links. For example, one ad produced in

response to a search for “weather” reads:

Local Weather Forecast

Get Live Weather Forecasts & More With The Free Weather Toolbar

Weather.alot.com

The first sponsored link is displayed at the top of the page in a highlighted box, while the others

are displayed in a column to the right of the organic search results. For each advertising impression,

our data describe the ads the user clicked and the times at which the clicks occurred.2

Our estimation strategy is based on the fact that searches using the same search strings generate

different advertising impressions. We treat this variation in impressions as exogenous and uncorre-

lated with users’ characteristics. Indeed, we have been assured by Microsoft that the impressions

were not conditioned on the users’ known characteristics or browsing histories. We also make the

crucial assumption that the characteristics of ads that determine users’ values for them did not

vary over our 3-month window. This assumption appears plausible for the four search strings we

2Advertising domains often experiment by varying the text of the advertising; we ignore this issue by ignoring the

text and treating all ads with the same domain as identical. To the extent the text matters to consumers, it will be

subsumed in our noise terms.
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consider: “games,” “weather,” “white pages,” and “sex”.34 In fact, it is easy to convince oneself of

the large random component in ad placement by searching for the same search string several times

in a row. The ad placement results from several fast-changing factors, such as advertisers’ varying

bids and budgets, the advertising engine’s estimate of the ad’s relevance based on its historical

CTR, and explicit experimentation by the engine. We believe that, at least for our search strings,

this randomness swamps any possible shifts in the ads’ relevance.

We begin by examining reduced-form evidence that contradicts the existing theoretical models

and suggests some dimensions in which the models need to be enriched. In particular, the prevalence

of externalities across ads contradicts the EOS model; that is, the CTR on a given ad in a given

position depends on which ads are shown in other positions. For example, the CTR of Domain 1

at position 2 on the “white pages” search string is 18% if its competitor at position 1 is Domain

3 (which is not a good match for “white pages”because it offers yellow pages), but drops to 8%

if the competitor is Domain 2 (which is a specialized advertising company).5 This difference is

statistically significant. The “cascade model” is contradicted by the observation that 46% of the

users who click on ads do not click sequentially on positions (1,2,. . . ), and 57% of the users who

click more than once do not “cascade,” that is, they click on a higher position after clicking on a

lower position. Also, the data exhibits certain kinds of externalities that could not emerge in the

cascade model: the CTR on a given ad in a given position depends on which ads are shown below

it, and the CTR on a given ad at position 3, given the two ads shown in positions 1 and 2, depends

on the order in which these latter two ads are presented.

Next, we formulate and estimate a structural model of rational user behavior that nests the

3To understand the importance of this assumption, imagine the preferences of users searching for “Paris Hilton”

changed abruptly from looking for a hotel in the capital of France to looking for the infamous sex video, and that the

advertising engine quickly responded to this preference change by changing the placement of ads. In this situation,

our estimation strategy would be invalid: for example, it might wrongly find that putting an ad in the top position

raises its CTR, when the engine may simply put the most relevant ad at the top, and no position effect is present for

any given ad.

Microsoft plans to release a dataset in which ad impressions are truly randomized and independent of ad charac-

teristics – an initiative known as the “adCenter challenge”:

http://research.microsoft.com/workshops/ira2008/ira2008 talk.pdf

Repeating our analysis on this dataset would eliminate any possible concerns about the endogeneity of impressions.
4Additionally, we test for stationarity by examining how the predictive power of the model changes over time. We

find the average predicted probability of choosing the observed bundle of ads does not depend on the time stamp.
5The domain names are available in the dataset, but to protect advertiser privacy, Microsoft does not allow us to

publish them.
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existing models. In our model, a user chooses his clicks sequentially under uncertainty about the

quality of ads. The model is related to the literature on consumer search (e.g., Hong and Shum

(2006), Hortacsu and Syverson (2004)), the closest work being Kim, Albuquerque, and Bronnenberg

(2010), which estimates online search for durable goods at Amazon.com. That study assumes full

satiation, that is, consumer gets utility from at most one purchase. In order to test for satiation our

model instead parametrizes the degree of substitutability (satiation) among ads with a parameter

R in a “Constant Elasticity of Substitution” utility function. For R = 0, user utility is the sum of

the utilities derived from the clicked ads, and in this case, no externalities are present across ads, as

in the EOS model. At the other extreme, when R =∞, user utility is the maximum of the values

of the ads he clicks on, so he derives utility from at most one ad, and the externalities are the most

prominent (similar to Kim, Albuquerque, and Bronnenberg (2010)).

In addition to the substitutability R, we endogenize the drop in the CTR associated with lower

positions. We allow it to be a consequence of two factors: scrolling cost and users’ expectations

about the quality of ads at different positions. We capture the former effect by position fixed

effects and the latter by a Bayesian signaling model. In such a Bayesian model, users have priors

about the quality of ads on each position which can be different across users to control for the

fact that different people might have had different ad experiences in the past. The users update

the priors with signals about the quality of a particular ad contained in an ad description. We

argue identification on the model’s parameters, and jointly estimate these two mechanisms under

the assumption that long-run user learning about quality of ads on each position is unbiased.

For each of the more common ads, we estimate their quality fixed effects and allow for user

heterogeneity by incorporating a user-specific random utility effect whose variance we estimate.

This effect proves important to fit the data, in which some users click on many ads while others

click on few or none. In addition, we allow for classical preference shocks.

We find that externalities are both statistically and economically significant. Our estimate of the

mean substitutability parameter R is 0.55, with substantial heterogeneity across users. Using the

estimate, we predict that the CTR on most domains in the hypothetical world without externalities

would have been substantially higher than their actual CTR. We predict that the total number of

clicks in our dataset would have been 51% higher had satiation been absent. Moreover, we find

evidence of user uncertainty: if this uncertainty were resolved prior to clicking, consumer welfare

would be 1% higher with 0.4% higher overall CTR.6

6Note that in our model of expected utility maximization, cardinal utility has empirical meaning: impression A
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We use our estimated model to predict user behavior on counterfactual ad impressions, and

generate impressions that maximize the total CTR or the expected user welfare. It is well known

that in the EOS model, the total CTR is maximized by assortative matching of higher-quality

ads to better positions. The same is not true in our model even without externalities (Ri =

0), because of learning from positions. To investigate this issue, we simulate short and long-run

counterfactuals of welfare-optimal and CTR-optimal matching policies and compare them to the

data and assortative matching according to simple OLS-type estimates. When computing the long-

run effects, we leverage on the fact that we explicitly estimate the expectations about quality of

ads on each position separately from (psychic) clicking costs. Consequently, we presume that in

the long-run, users learn exactly the new search engine placement policy collapsing the priors to

degenerate distributions. We find that in the short run, the assortative matching provides about 11%

improvement in welfare and 8% improvement in the CTR. In comparison, welfare-optimal placement

provides 33% welfare improvement and CTR-optimal matching provides 23% CTR improvement.

Welfare and CTR-optimal matchings are in practice very similar to each other but different than

assortative matching. These results are robust to allowing for long-run adjustments.

Researchers have also suggested that targeting the impressions to individual users, for example,

based on their browsing history or demographics, could improve user experience and CTR (e.g.,

see Radlinski and Dumais (2006) for a discussion of targeting and ad diversity). We can bound

above the gain in user welfare and CTR that such targeting could achieve, by simulating “first-

best” targeting based on the users’ individual characteristics. We find that user-optimal first-best

targeting could raise user welfare by 69%, whereas CTR-optimal first-best targeting would raise the

total CTR by 58%. Moreover, we find that these gains become more significant in the long run. In

particular, welfare can be raised by 70% and CTR can be raised by 61%.

Athey and Ellison (2011) (henceforth AE) model user learning about general ad relevance in

the course of a search session: upon learning the relevance of a clicked ad, the user updates his

being x% better than impression B means that the user is indifferent to receiving impression B for sure and receiving

impression A with probability x
100+x

and no ads at all with the complementary probability.
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beliefs about the relevance of the other ads in the same impression.7 Our paper ignores this kind

of updating, keeping position priors fixed within the impression. More explicitly, we assume that

realized ad quality ex-post clicking does not affect priors of other positions in the short-run for two

reasons: (1) Such updating would generate positive “informational externalities” across ads, that

is, an ad would benefit from having better ads in the same impression. Empirically, we find that the

overall externalities are instead negative, and separate identification of both satiation externalities

and informational externalities from the available data would be difficult. (2) We believe such

updating to be a long-run rather than a short-run phenomenon. As consumers use a given search

engine frequently, we don’t expect much learning about relevance to occur in the course of a single

session (as assumed in Athey and Ellison (2011)). Although long-run learning over the course of

many sessions may prove to be important, we are unable to observe it in our data, which (for privacy

reasons) does not keep track of user histories.

The paper is organized as follows. Section 2 describes the dataset and examines some reduced-

form evidence. Section 3 presents the model. Section 4 describes identification and estimation.

Section 5 discusses the estimation results. Section 6 simulates counterfactual matching policies.

Section 7 concludes.

2 The data and its preliminary analysis

2.1 Data Description

Our dataset offers a selection of advertising impressions and user behavior on Microsoft’s Live Search

advertising engine. As of May 2008, Live Search had 9.1% of the U.S. online search market (as

compared to the market leader Google’s 61.6%).8 This modest market share nevertheless translated

into about 900 million search queries per month. This enormous data is generally not available to

external researchers, primarily out of concerns for compromising user privacy. However, in 2008,

Microsoft created a DVD with a sample of user search and advertising data, cleaned up to eliminate

7In the authors’ basic model, the ads’ texts are uninformative, so the CTR on a given ad depends on the information

learned from clicking on the preceding ads, but not on the ad itself. User behavior in this model is similar to that in

the “cascade” model, with the added feature that the probability of continuing after clicking on a given ad depends not

just on this ad’s quality but also on the qualities of the ads above it (which determine user beliefs about the quality of

subsequent ads). Like the cascade model, the AE model is inconsistent with non-sequential and non-cascading clicks

and with externalities from below.
8http://www.techcrunch.com/2008/05/22/the-empire-strikes-back-our-analysis-of-microsoft-live-search-cashback/
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privacy-compromising information. Microsoft distributed this DVD to a few dozen recipients of the

company’s external research grants, as well as to a small number of other researchers, including the

authors of this paper.

The sample of impressions on the AdCenter DVD was randomly generated from the search

engine’s complete log file. The sampling scheme involved selecting an impression at random from

the log and then including all the other impressions displayed to the same user during the same

session. The average length of a session is about 10 minutes. Impressions that were part of longer

user sessions have a proportionally higher probability of being in the dataset than shorter ones.

Because the vast majority of the sessions contain only one impression, we believe sample selection

issues are not of importance.

A Microsoft technical team screened each data point for privacy protection, and each search

string was “normalized.” We do not have full information about the transformations employed,

because this information is proprietary to Microsoft. However, the company assured us that the

normalization did not involve anything more complicated than converting the case of letters and

getting rid of special characters, articles, and prepositions. We tried to minimize the impact of such

transformations by the choice of search strings to analyze.

The subset of the dataset that we examine contains the impressions produced on four search

strings (exact match) – “games,”“weather,”“white pages,” and “sex”– that produced the most

sponsored-ad clicks in the data, with the exception of searches for domain names and the “yellow

pages” string. We did not consider searches for domain names such as “google” or “myspace”

because we believe such searches commonly arise when a user either (i) mistakenly types a domain

name into the search box, or (ii) types an incomplete domain name in the browser’s address bar,

forgetting an extension such as “.com,” and is redirected by the browser to the search engine. The

user’s behavior in such situations may not be typical of his behavior following intentional searches.

We also excluded the searches for “yellow pages” because we did not find enough variation in the

impressions on this query to estimate our model.

We matched the impressions on the selected search strings to clicks on these impressions, apply-

ing a couple of sanity rules. We dropped impressions with the same unique impression ID because

we believe they were due to errors in the data-generation process. Similarly, when we observed more

than one click on the same link in an impression, we kept only the first click. Because the vast ma-

jority of repeat clicks occur within seconds of the first click (e.g., 84% occur within 10 seconds), we

believe the repeat clicks are either user errors or attempts to reload the website following technical
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problems. If any repeat clicks are not user errors or technical problems, we effectively assume they

do not affect the user’s payoff (i.e., yield a zero marginal utility and have a zero marginal cost),

which would justify dropping them. Our final dataset contains 92, 136 impressions, of which 17.7%

have at least one click and 1.4% have at least two clicks.

2.2 Non-cascade clicks

Our dataset exhibits a couple of features of user behavior that the theoretical models in the existing

literature do not capture, namely:

• 46% of users who click do not click in the sequential order of positions, i.e., (1,2,. . . );

• 57% of users who click more than once do not “cascade,” i.e., click on a higher position after

clicking on a lower position.

These findings are inconsistent with the cascade model or with the AE model, both of which

predict “cascades,” and the latter also predicts sequential clicks. These findings demonstrate the

importance of user heterogeneity, confirmed by having different orders of clicks by different users

facing the same impression.

We model heterogeneity by letting users have different preferences over ads. Formally, we

introduce a user×ad random utility effect, which captures differences in users’ tastes.

2.3 Rich Externalities

Another important observation from the data is the prevalence of externalities, in particular, the

CTR on a given ad in a given position depends on which ads are shown in the other positions. These

externalities immediately violate the EOS model or any other model in which users’ decisions to click

on different ads in an impression are independent of one another. Also, some of these externalities

are inconsistent with the cascade model.

The externalities are evident by examining the dependence of CTR of a given ad in a given

position on the relevance of the competing ads displayed in the same impression. For example,

Table 1 presents the evidence for “externalities from above,”namely, we examine the dependence of

CTR of Domain 1, displayed at position 2, conditional on different competitors displayed at position

1.9 Comparison of the CTRs suggests negative externalities from the competitors. Namely, Domain

9We were able to conduct this analysis only for the most popular domain configurations that have enough obser-

vations to conduct statistical tests.
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Competitor CTR
Domain 1

Domain 2 0.0763
(0.0060)

Domain 3 0.1842
(0.0138)

Domain 4 0.1078
(0.0240)

Competitor CTR
Domain 1

Domain 2 0.0189
(0.0020)

Domain 3 0.0535
(0.0038)

Domain 4 no observations

Table 1: CTRs on Domain 1 in search string “white pages” and Domain 1 in search string “weather”

at position 2 conditional on different domains at position 1. Standard errors are provided in paren-

theses. The estimates have asymptotic normal distributions.

1 in the “white pages” search string receives higher CTR if the competitor above has low relevance

(e.g. Domain 3, which does not have any white-page information) rather than high relevance (e.g.

Domain 2 or Domain 4 ). We obtain the same conclusion when examining the “weather” search

string. Specifically, Domain 1 has higher CTR when facing Domain 3 (which does not have any

weather information) as the above competitor than facing Domain 2 (which is a well known weather

website). These differences in CTR are statistically significant (with a p-value of less than 1%) and

suggestive of negative externalities, which may be attributed to users being satiated after clicking

on good advertisements. In an extreme case of satiation, a user might not derive any benefit from

a second ad; for example, he may be fully satisfied with a single weather report.

Table 2 presents more evidence of negative externalities, this time from below. Specifically, we

compare CTRs of different domains, placed in position 1 of “white pages” search string, between

those impressions that contain high relevance Domain 1 as competitor in any of the lower positions

and impressions that do not contain Domain 1. We find that the differences in these CTRs are

statistically significant. Note that we do not control for the overall number of ads in the relevant

impressions which can affect the CTR of position 1. Nevertheless, we show that our tests are a

conservative assessment of the impact of Domain 1 because the average number of competitors is

lower in the impressions that have Domain 1. An important implication of externalities from below

is the rejection of cascading models (including the AE model) in which users always make clicking

decisions going sequentially from top to bottom. Instead, users appear to exhibit more rationality,

examining many ads before choosing which ones to click.

Another interesting observation that is inconsistent with the basic cascade model is that switch-

ing the ads in the top two positions affects the CTR of the ad at position 3. We were able to
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Domain 1 present
as a competitor

in lower positions?

CTR
of position 1

Difference in CTRs
of position 1

No. obs. Average no. of ads
in the impression

Domain 2 Yes 0.11
0.074∗∗∗

(0.009)

5,061 6.1

in position 1 No 0.18 2,112 7.1

Domain 3 Yes 0.16
0.067∗∗∗

(0.013)

1,560 7.1

in position 1 No 0.22 2,022 7.6

Domain 4 Yes 0.16
0.019
(0.032)

304 7.3

in position 1 No 0.17 253 7.3

Table 2: Comparison of CTRs of domains at position 1, in the “white pages” search string, between

impressions that contain high relevance Domain 1 as competitor in any of the lower positions and

impressions that do not contain Domain 1. Statistically significant difference of CTRs between these

two cases is evidence for the externalities “from below.” Three stars means statistical significance

at 1% level.

perform this analysis for one impression configuration on the “weather” search string. The number

of relevant observations in the other cases was fewer than 300, and the search strings “games” and

“sex” contained no relevant observations at all. The CTR of Domain 1 in position 3 conditional on

having Domain 3 at position 1 and Domain 2 at position 2 is 0.0434. When we switch the top two

ads, the CTR drops to 0.0077; this drop is statistically significant at 0.05 level (an asymptotic Wald

test statistic is 2.193 is distributed as standard normal). As mentioned earlier, we believe Domain

3 is not a relevant domain for “weather,”whereas Domain 2 is. Thus, assortitatively matching the

better competitor domains with the higher position in the top two positions negatively impacts the

CTR of the lower ad. This externality can again be attributed to user satiation because assortative

matching increases the likelihood of the user clicking on the better domain first, making him more

satiated and less likely to subsequently click on an ad in a third position.

In addition to the externalities caused by satiation, we may expect externalities caused by user

learning about the quality of ads (as in Athey and Ellison (2011)). In contrast to satiation, we

would expect learning to generate positive externalities: seeing one relevant ad would raise the

user’s expectation about the relevance of ads in general and make him more likely to click on other

ads. Because the overall externalities exhibited in the data are negative, satiation appears to be a

more important source of externalities than learning. Identifying these two effects separately, given
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Search string and domain at position 1

games
Domain 1

weather
Domain 1

white pages
Domain 1

sex
Domain 1

Clicking on pos. 1 0.051 0.046 0.17 0.037

Not clicking on pos. 1 0.034 0.043 0.116 0.045

Difference 0.017∗∗∗
(0.005)

0.003
(0.006)

0.054∗∗∗
(0.009)

0.008
(0.006)

Table 3: Probability of clicking on ads in positions 2-8 conditional on clicking and not clicking on

position 1.

our dataset, would be difficult: we cannot tell if a user stops clicking because he is satiated by the

ads he has clicked on or because he is discouraged by their poor quality. One way to distinguish

between these two effects would be by using the data on “conversions” (i.e., purchases or follow-up

requests) following the clicks. Another way would be to consider long-run learning about the general

quality of ads across different search strings (where satiation is not an issue). Because we do not

currently have data on conversions or on user histories, we cannot undertake either approach.

2.4 User Heterogeneity

Another interesting feature of the data is positive correlation between clicks on different positions

in a given impression. We found this correlation by looking at impressions with a given ad (the

most popular) shown at position 1, and examining the correlation between clicking on this ad and

clicking on any other ad in the impression. In a model without satiation in which a user’s values

for different ads are drawn independently (such as the EOS model), the correlation would be zero.

In a world with satiation but with independent draws, the correlation would be negative. However,

Table 3 demonstrates that the actual correlation is in some cases positive and statistically significant

and in others statistically insignificant. For example, when Domain 1 is displayed at position 1 on

the “games” search string and the user clicks on it, the probability of clicking on any other position

is 5.1%, whereas if the user does not click on it, the probability of clicking on any other position is

3.4%, and this difference is highly significant. We find similar significant positive correlation in the

“white pages” search string, but no significant correlation in the other two search strings.

To explain these correlations, we model “vertical” heterogeneity of user valuations of ads. For

example, on the one hand some users may have higher utilities for all ads (e.g., due to higher

beliefs about the relevance of sponsored-search advertising), and on the other hand, some users
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may have lower utility for all ads. Such heterogeneity has to be large enough to offset the negative

correlation among clicks created by satiation. Beyond explaining a correlation in clicks, the vertical

heterogeneity is also needed to explain disproportionate numbers of multiple-clicks observations (or

“bundles”). Namely, our model without satiation, uncertainty, and with independent clicks (which

is then equivalent to the EOS model) would predict only 911 bundles of 2 clicked ads, compared to

1,157 in the data, and only 20 bundles of 3 clicked ads, compared to 188 in the data. Note that

introducing satiation into the model increases this discrepancy further as people click fewer bundles,

thus, we are likely to find more vertical heterogeneity than one would find using a model without

satiation.

3 Model

Consider a user i who faces an impression [a(1), ..., a(N)] , where N is a number of displayed adver-

tisements, and a(n) ∈ A is an ad displayed in slot n. The user’s value of clicking on an ad a (or a

quality of the link a) is given by

vai = va + εai + δi,

where va is the mean quality of the link a common to all users, εai is the idiosyncratic shock to

quality of the link a, and δi is the user specific aggregate shock to value of any sponsored links.10

The user can click a subset C of ad slots and obtain a gross utility of

Ui(C) =

(∑
n∈C

v1+Ri
a(n)i

)1/(1+Ri)

−
∑
n∈C

fn, (3.1)

where fn is a cost of clicking on an ad in position n, and Ri is a parameter that captures the

substitutability of different ads to the user. We allow for user heterogeneity in Ri and assume that

Ri = R+ σRηi, where ηi is a standard normal random variable.

Users do not observe the quality vai prior to clicking, but have access to ad descriptions. Ad

descriptions provide full information about the idiosyncratic parts εai and the aggregate shock δi

and convey unbiased signals xai about mean qualities va. Prior to reading the description users

have priors about va at each slot, which are distributed as independent normal random variables

with means v̄n and variances σ̄2
i .

11 These priors are a result of a long-run cross-impression learning

10Note that the value of an ad does not depend on the position of an ad.
11We model position priors as independent random variable, but we allow for arbitrary correlation of actual qualities

va across positions.
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process.12 We allow that the priors’ means depend on the position to capture that users have

different beliefs about the quality of advertising at each slot. However, we assume that prior

variances σ̄2
i are the same across positions. Theoretically, our model facilitates identification of the

position-specific variance, but we failed to reject that these variances are the same with a 1%-size

test. Further, we assume that position priors are unbiased, that is, the mean of quality of displayed

ads in a particular position is the same as the mean of users’ prior. To capture that some users

might be more influenced by positions we allow the precision of the prior to vary across users.

Specifically, we set σ̄i = σ̄+σσ̄ζi, where ζi is a standard normal random variable. An extreme case,

when σ̄i is small, approximates cascading models in which the user clicks from top to bottom no

matter which ads are shown. At the other extreme, when σ̄i is large, the position of an ad does not

influence its CTR.

In order to nest EOS model we assume that εai is drawn from an exponential distribution whose

decay parameter is normalized to 1 (i.e., the c.d.f. is Fε (εai) = 1 − e−εai ). As for δi, it is drawn

from a normal distribution with mean zero and variance σ2
δ .

The description signal about va is given by xai = va+σννai, where νai is a standard normal ran-

dom variable.13 The posterior beliefs about the va(n)i are given by independent normal distributions

with means

µ̂a(n)i =

(
xa(n)i

σ2
ν

+
v̄n
σ̄2
i

)
/

(
1

σ2
ν

+
1

σ̄2
i

)
+ εa(n)i + δi,

and the variances

σ̂2
a(n)i =

(
1

σ2
ν

+
1

σ̄2
i

)−1

.

Note that users know idiosyncratic components εai and δi prior to clicking and learn the mean

component va after clicking. An alternative choice would be to assume that users know the mean

component and learn about the idiosyncratic components (in a similar way as Kim, Albuquerque,

and Bronnenberg (2010)). In our case, such alternative assumptions would force the rational users to

have homogeneous priors across positions and would rule out rational position clicking bias. Such

homogeneity is a consequence of the search engine’s inability to target advertising on individual

characteristics, which implies that the position is independent of εai and δi.
14 Consequently, in this

12In this study we do not have data on the behavior of users across impressions, so we are unable to describe how

these priors are formed. However, under the assumptions outlined in this section, we are able to estimate the priors

from the data.
13Similar to prior variances, we are technically able to allow σ2

ν to vary across ads, however, we failed to reject that

these variances are the same with a 1%-size test.
14Note that the ad position is likely correlated with va.
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study we use the simplest version of the rational model that supports different position priors in

which users learn about va and have full information about εai and δi. An important byproduct

of this setup is maintaining conjugate priors while nesting the EOS model (such nesting requires

εais to be exponential random variables). To test if such an informational assumption is important,

we estimated a version of the model in which users are uncertain about both va and εai and find

quantitatively similar results.

The timing of the user’s decision problem is as follows:

(i) The user searches for a particular keyword and forms priors about the quality of ads at each

position ((v̄1, σ̄i), ..., (v̄N , σ̄i)).

(ii) The user observes the impression [a(1), ..., a(N)] and reads descriptions of all ads in the im-

pression. The user learns εai and δi and forms posterior beliefs about mean qualities va using

description signals (x1i, . . . , xNi).

(iii) The user either clicks on an ad in a chosen position c or stops clicking (exits).

(iv) The user observes the true quality va of a clicked ad a(c).

(v) Go to (iii).

We assume the user is a forward-looking expected-utility maximizer and knows all the parame-

ters. His decision process can be modeled as a dynamic programming problem whose payoff-relevant

state can be summarized with a set C ⊂ {1, ..., N} of clicked positions and a sufficient statistic about

the utility of C, given by S =
∑

n∈C v
1+Ri
a(n)i . The optimal continuation value of user i in state (C, S),

which we denote by Vi (C, S), is governed by the following Bellman equation:

Vi (C, S) = max

{
S1/(1+Ri) −

∑
n∈C

fn, max
c∈{1,..,N}\C

EVi

(
C ∪ c, S + v1+Ri

a(c)i

)}
(3.2)

The expectation is taken with respect to the posterior of va(c)i described earlier. This model is rich

enough to nest the following special cases:

• Ri = 0 (additively separable utility), σν = 0 (no uncertainty): The user’s clicking decisions on

different ads are then independent, and no externalities are present across ads. Additionally,

if user random effects are absent (i.e., σ2
δ = 0), the clicks on the different positions are

statistically independent, and the CTR on ad a at position n is Pr {va + εai − fn ≥ 0} =

F (fn − va) = min
{
evae−fn , 1

}
. Thus, provided that each ad receives a CTR less than one in
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any position (which is certainly true empirically), our model nests the EOS model as a special

case, in which the CTR is the product of the ad fixed effect (e−va) and the position fixed effect

(e−fn).15 This nesting is the key motivation for our adoption the exponential distribution of

errors εai, and allows a simple quantitative interpretation of the estimated fixed effects on the

CTR. In the EOS case, a consistent estimate of the fixed effects va and fn can be obtained

with an OLS regression of the logarithm of CTR on the ad and position dummies. Note that

user uncertainty about relevance cannot be identified in this model – only the quality of ad

a, va can be identified. Note also that because only the differences va − fn are identified in

the EOS model, the fixed effects fn and va are identified only up to a constant.

• Perfect substitutability: Ri =∞. In this case, the user’s utility asymptotes to

Ui(C,v) = max
n∈C

va(n)i −
∑
n∈C

fn;

that is, the user derives utility from at most one ad (e.g., he derives no benefit from viewing

a second weather forecast). This is reminiscent of the classical consumer search model (e.g.,

Weitzman (1979) and Kim, Albuquerque, and Bronnenberg (2010)). We can also approximate

“cascade models” in which users click positions top to bottom by assuming that position

clicking costs fn increase sharply at position n relative to any variation in ad quality or that

the precision of the position priors is low.

We also allow for the case of R < 0, in which the clicks are complements rather than substitutes.

4 Estimation and Identification

We estimate the model using the Simulated Generalized Method of Moments based on Pakes

and Pollard (1989). Because the model allows for a rich persistent unobserved heterogeneity (in-

cluding continuous types), the moments are computed using a nested dynamic programming ap-

proach. First we draw user specific effects (ε, δ), satiation parameter Ri, and user-specific priors

[(v̄1, σ̄ni), ..., (v̄N , σ̄Ni)] as well as ad-quality signals coming from the descriptions (x1i, ..., x1N ). Us-

ing these primitives, we compute the user’s optimal policy by solving system (3.2) by backward

15If σ2
δ > 0 and is not too large, the random variable εai+δi can be approximated in the relevant upper tail with an

exponential distribution, and the CTR can be approximated with the EOS multiplicatively separable form. Still, the

model would be distinguishable from the EOS model by predicting a positive correlation between clicks on different

positions.
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induction. The solution produces an optimal policy as a function of a set of clicked ads C as well

as the sufficient statistic, S, about the accumulated utility. We compute the user-level moments

by running this policy forward 100 times and taking the average of user-level moments. In each

iteration of the estimation algorithm we use 500 draws of the random components per observa-

tion, which amounts to solving about 50 million dynamic programming problems.16 Note that the

model cannot be solved using the reservation value approach described in Weitzman (1979), because

Weitzman’s model assumes extreme degree of satiation, that is Ri = ∞. One can show that for

intermediate values of Ri the reservation value for the next click depends on the state S, whereas

in Weitzman (1979) it was independent of the state. In practice, the reservation utilities have to be

recomputed for each S, which is equivalent to fully solving the Bellman equation. Further details

of the computational procedure are presented in Appendix A.

We do not explicitly model cross-visit user learning. Instead, we infer users’ position priors using

the assumption that the cross-impression learning generates unbiased priors and that ad placement

is stationary. Under the first assumption, v̄n = E[va|n]. Under the second assumption, we can

estimate the mean of the position prior by using the sample equivalent; that is, we set

v̄n =
∑
a

φnava, (4.1)

where φna is the observed frequency of placing an ad a on the position n. We preestimate φna from

the data and use it during the GMM estimation procedure to construct an estimate of v̄n using

parameter values of of va and equation (4.1).

Our model has 49 unknown parameters and identifies them using 78 conditional micro moments,

which are described at the end of this section. The moments are conditional on the search string

and ad placement in an impression. Additionally, micro moments are clustered by time stamp using

T = 88 equally sized groups of M = 1047 observations which correspond to daily clustering.17 Such

a procedure allows for an arbitrary correlation of random effects within the day. Formally, the

estimator minimizes the objective function

QT (θ) =

[
1

T

T∑
t=1

Gt(θ)

]′
W

[
1

T

T∑
t=1

Gt(θ)

]
,

16Initial computations were possible thanks to supercomputer resources provided by Microsoft Corporation. The

most recent results were obtained using a 112-core Berkeley computer cluster.
17We tried many different levels of clustering and find no significant differences between asymptotic distributions of

the estimates. For this reason, we decided to report the clustering level that makes the least assumptions about the

distribution of the random effects.

17



where Gt are clustered micro moments and W is a weighting matrix. In particular,

Gt(θ) =
1

M

M∑
m=1

∫
ε,δ
gtm(θ|ε, δ)d(ε, δ)− ḡtm,

where ḡtm are the micro moments observed in the data for the impression m in cluster t, gtm(θ|ε, δ)

are the micro moments predicted by the model conditional on (ε, δ), and d(ε, δ) is the distribution of

the random components. The integral of the random components is approximated using a frequency

estimator with L = 500 IID draws of (ε, δ) for each observation.

Suppose that θ0 is a true parameter vector. We make standard assumptions about the identifi-

cation of the model, that is E[G(θ0)] = 0, E[G(θ1)] 6= 0 if and only if θ1 6= θ0. Moreover, we assume

that the following limit statements are true:

1

T

T∑
t=1

∂Gt(θ0)

∂θ′
P−→ D

and
1√
T

T∑
t=1

Gt(θ0)
d−→ N(0,Ω)

Furthermore, suppose that Ω̂−1
T is a consistent estimator of Ω; then if we set the weighting matrix to

ŴT = Ω̂−1
T our estimator is asymptotically normal with variance-covariance matrix 1

T (D′Ω−1D)−1

as T approaches infinity.

To obtain an estimator of Ω we need to make further assumptions about the correlation of Gt

across clusters; that is, we assume that Gt follows an MA(1) process. An important consequence

of this assumption is that ad placement and random effects can be serially correlated across days.

Consequently, we use Newey and West (1987) estimator of Ω given by

Ω̂T =

(
1 +

1

L

)[
Ω̂0 +

1

2
(Ω̂1 + Ω̂′1)

]
,

where

Ω̂0 =
1

T

T∑
t=1

GtG
′
t Ω̂1 =

1

T − 1

T∑
t=2

GtG
′
t−1

Note that we correct the variance by 1 + 1
L because we use L simulations to compute the moments

(see McFadden (1989), and Pakes and Pollard (1989)).

In practice we perform the estimation in several steps. We start with the OLS estimates of

the OES model, θ̂(0), and compute the corresponding estimate of the optimal weighting matrix

Ŵ (0). Next, we obtain θ̂(1) using GMM and repeat the steps until convergence. To minimize the

computation time we gradually increase the number of draws, L, until we reach 500.
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In the reminder of this section we discuss the particular choice of moment and identification.

Our parameters are divided into four groups:

(i) domain mean qualities va,

(ii) position fixed effects fn, variance of the priors σ̄2
n for each keyword and heterogeneity of this

variance σ2
σ̄,

(iii) variance, σ2
δ , of the user random effect,

(iv) the satiation parameters (R, σ2
R), the domain/position normalizing constant, and the precision

of the description signals σ.

We discuss the identification of all groups separately.

We can identify effects of parameters in the group (ii) separately from the domains’ expected

qualities v̄a up to a constant even if Ri = 0. The moments that identify these parameters are the

CTRs of domains and the CTRs of positions. Thus, we include search-string-specific probabilities

of clicking on each position from 1 to 5 and clicking probabilities for each domain (we dropped the

moments proven to have close to zero variance). In the data, we observe the same domains placed in

different positions, which allows us to identify the fixed effects: we can identify effects of positions

(joint effects of priors and position costs) on clicking by comparing the CTR of the same domain

at different positions. Similarly, we can identify ad qualities va by comparing the CTRs of different

ads in the same position. (When Ri > 0, we also have to control for the ad’s competitors.) Under

our assumption that user/position noise is distributed exponentially with decay parameter 1, the

position effects can be interpreted as factors in the CTR.18

Position fixed effects fn can be separately identified from the effects of position-specific priors

by looking at the interaction between positions and the advertisements. On the one hand, if the

drop of CTRs on lower positions is caused by position priors, good ads should benefit from top

positions less than bad ads and good ads should lose CTR from lower positions more than bad ads.

On the other hand, if the CTR drop is caused by clicking cost (position fixed effects), we should not

see interactions between positions and ads. To capture these effects, we include domain-position-

specific CTRs for the top two advertisers placed at each of the top three positions. Including such

18Because the number of clicks on positions 6 and 7 is very small, we assume the cost of clicking on those are 10%

and 30% higher, respectively, than on position 5; these numbers don’t affect the estimation.
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moments is similar to supplementing an OLS regression of log-CTR on position and ad dummies,

that is used to estimate an EOS model, with interaction terms.19

To identify the standard deviation σδ of the user random effect, we include the unconditional

probabilities of bundles of two and three clicks. Increasing σδ boosts the correlation of clicks on

different ads in the same impression, and increases the probabilities of clicking bundles. These

moments also identify the variance of Ri, because the higher variance generates more bundle clicks.

One of the main contributions of this paper is identifying the user’s satiation parameter R and

separating utility from cost. For this purpose, we use two additional sets of moments. The first

set is composed of conditional probabilities similar to those presented in Table 1. For each search

string, the set consists of the following three moments:

• the probability of clicking on the most popular domain at position 2 conditional on the second

most popular domain being at position 1;

• the probability of clicking on the most popular domain at position 2 conditional on the third

most popular domain being at position 1;

• the probability of clicking on the second most popular domain in position 2 conditional on

the most popular domain being at position 1.

We dropped a few such moments that had zero observations in the sample. We did not include

similar conditional probabilities for other impressions due to the small number of observations with

such impressions.

The second set of moments identifying R consists of probabilities of continuing clicking after

clicking on a given domain. We have three such moments per search string for the three most

popular domains. The satiation parameter is identified from these moments, as more satiation means

lower probabilities of continuing clicking. Given our assumed functional forms, the parameter R as

well as the normalizing constant separating domain utilities and position costs are both identified.

Identification is driven by the fact that moving a constant from costs to utilities and increasing R

produce different curvature of incremental utility of subsequent clicks as a function of the already

clicked links. Similarly, we can identify the precision of the description signal, which determines the

amount of user uncertainty prior to clicking. In particular, if we observe domains with a large CTR

but also with a large continuation probability, we infer that precision of the description is low.

19We find the interaction terms in the log-CTR regressions to be statistically different from zero, which is consistent

with different position priors.
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We argued in Section 2 that cascade model and AE model are not very realistic because they

cannot explain non-ordered clicks. To ensure that our model explains this phenomenon we include,

in addition to the already discussed moments, the probabilities of clicking on a link in a higher

position conditional on clicking on a link in a lower position for each search string.

We perform moment weighting using a consistent estimate of the optimal weighting matrix,

which in this case is the inverse of the asymptotic covariance matrix of the moment conditions.

Estimation was done in three steps: (1) we evaluated the moment conditions at the starting point to

get the initial weighting matrix; (2) we performed the minimization routine (using initial weighting

matrix) and computed a consistent estimate of the optimal weighting matrix; and (3) we obtained

final estimates by minimizing the weighted sum of squared sample moment conditions.

To perform nonlinear optimization, we used the combination of Nelder-Mead and Levenberg-

Marquard gradient method20 with a 10−9 tolerance factor. The starting point for the estimation

was a consistent estimator of the constrained model with R = σ = 0. In this special case, the model

is separable, so we obtained consistent estimates of v̄a and fn by regressing the logarithm of the

domain/position CTRs on the domain and position dummies. Because the cost and utility in the

restricted model are identified only up to a constant, we normalized the cost of clicking on the top

position to be 0. We drop this normalization when estimating the full model.

5 Results

Tables 4, 6, 7, and 8 present the estimates of the model. Table 4 presents the estimated position

clicking costs for each search string. Table 6 presents the estimated quality measures of selected

domains, organized by search string. Table 7 contains the estimates of the satiation parameter R

and the user heterogeneity parameter σ2
δ . Finally, Table 8 presents the estimates of the Bayesian

signaling model.

Table 4 presents our estimates of clicking costs on positions 1 to 5 in the four chosen search

strings. To interpret the magnitude of numbers presented in Table 4, recall that the utility of not

clicking anything is normalized to 0. The fact that users face an exponential shock to their utility

means that reducing the cost of a position by 1 increases the CTR of the position by a factor of e.

As expected, higher positions have a lower cost of clicking. By exponentiating the cost differ-

ences, we obtain the ratios of CTRs on different positions in the EOS world of Ri = 0. For example,

20Uses software developed by the University of Chicago, as Operator of Argonne National Laboratory.
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Search string

games weather white pages sex

Position 1 −1.66
(0.031)

−1.10
(0.028)

−1.94
(0.025)

−2.01
(0.053)

Position 2 −1.64
(0.023)

−1.71
(0.032)

−2.59
(0.024)

−2.20
(0.051)

Position 3 −2.07
(0.020)

−2.12
(0.030)

−3.25
(0.031)

−2.54
(0.065)

Position 4 −3.68
(0.075)

−3.84
(0.048)

−5.30
(0.091)

−3.18
(0.206)

Position 5 −3.98
(0.140)

−4.28
(0.104)

−5.52
(0.201)

−4.38
(0.611)

Table 4: Estimates of clicking cost in the baseline model.

Search string

games weather white pages sex

Position 1 −2.16
(0.049)

−3.37
(0.018)

−1.59
(0.036)

−1.74
(0.037)

Position 2 −2.46
(0.042)

−3.89
(0.018)

−1.46
(0.037)

−2.62
(0.037)

Position 3 −2.48
(0.042)

−3.61
(0.012)

−1.87
(0.038)

−2.89
(0.043)

Position 4 −2.65
(0.039)

−3.72
(0.016)

−2.31
(0.044)

−3.05
(0.057)

Position 5 −2.74
(0.038)

−4.01
(0.023)

−2.49
(0.047)

−3.09
(0.062)

Position 6 −2.79
(0.038)

−4.22
(0.029)

−2.62
(0.050)

−3.12
(0.066)

Position 7 −2.82
(0.038)

−4.38
(0.033)

−2.68
(0.051)

−3.13
(0.066)

Position 8 −2.83
(0.038)

−4.46
(0.035)

−2.69
(0.051)

−3.13
(0.067)

Table 5: Estimates of the mean of position priors.
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Search string

games weather white pages sex

Domain 1 −2.04
(0.054)

−2.70
(0.040)

−0.35
(0.057)

−0.38
(0.038)

Domain 2 −2.06
(0.051)

−3.66
(0.021)

−1.08
(0.040)

−2.11
(0.046)

Domain 3 −1.27
(0.055)

−3.82
(0.046)

−1.26
(0.033)

−2.70
(0.051)

Domain 4 −2.21
(0.058)

−2.70
(0.040)

−0.80
(0.081)

−1.36
(0.097)

Domain 5 −2.83
(0.036)

−4.53
(0.034)

−2.71
(0.044)

−3.13
(0.073)

Table 6: Estimates of domain quality and probabilities of relevance.

Satiation parameter Preference shock

Mean (R) Std. dev. (σR) Std. dev. (σδ)

0.57
(0.026)

0.18
(0.028)

2.15
(0.027)

Table 7: Estimates of the user specific random effects: satiation parameters and preference shocks.

Std. dev. of the prior (σ̄) User random effect Description noise

games weather white pages sex std. dev. (σσ̄) std. dev. (σ)

0.86
(0.210)

0.94
(0.127)

0.83
(0.144)

1.20
(0.107)

0.08
(0.064)

0.25
(0.023)

Table 8: Estimates of the learning process: standard deviations of the position priors for each

keyword, user level random effect, and standard deviation of the noise in a description signal.
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in the “games” search string, the CTR of a given ad at position 1 is exp (3.98− 1.66) ≈ 10 times

higher at position 1 than position 5. In the “weather” search string, the ratio is exp (4.28− 1.10) ≈

24.

Because we estimate the learning model separately from the position fixed effects, we know the

above reluctance to click on lower positions is due to users’ bounded rationality that creates a high

“psychic” cost of clicking on them, as opposed to expectations about the quality of positions that

does not come from sponsored search. This fact is important when predicting long-run responses

to changes in the ad-allocation policy, because users would not update their cost in response.

Our separation of utility from cost enables us to compare the costs of clicking on ads under

different keywords. For example, people searching for “weather” find clicking on sponsored links to

be relatively inexpensive, as opposed to those searching for “white pages.”This cost heterogeneity

of search strings may be due to the selection of different users in different searches and also to

competition with the “organic search” results: if some keywords have better organic search results

than others, the difference would manifest itself in our model as a higher cost of clicking on sponsored

search results. Unfortunately, we do not observe organic search links for the impressions we analyze,

so we cannot test this hypothesis.

Also note the heterogeneous cost differences between positions. This observation is important for

optimizing bidding strategy in the keyword auctions. For example, “weather” exhibits the biggest

percentage jump in cost between positions 1 and 2. This jump suggests that winning slot number

1 versus 2 carries extra value. At the same time, the percentage jump for “sex” is much smaller, so

an advertiser might benefit from bidding less and taking position 2. Finally, we find no statistically

significant differences in clicking cost of top positions in the “games” keyword, which suggests no

additional value of winning slot 1 instead of 2.

Means of position priors are reported in Table 5 and are computed using the equation (4.1).

The expectations about quality are monotonic, that is, people expect better quality ads on higher

positions. We note that the quality drops sharply when moving from position 1 to 4 and remains

roughly constant across positions 4 to 8. Moreover, we note that impact of the position prior on

clicking bias depends on the search string. On the one hand, in “games” search string the drop

in expectations between positions 1 and 4 is negligible, while the increase of the clicking cost is

substantial. It suggests that most of the position bias in this keyword is driven by the psychic cost.

On the other hand, in “sex” search string the expectation difference between positions 1 and 4 is

substantial, while the difference in cost is negligible, which suggests that most of the clicking bias
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is driven by rational expectations.

Table 6 presents the estimates of the mean qualities va of selected domains for each keyword.

In each keyword, we have selected the four most-clicked domains and pooled all the other domains,

assuming they have the same quality. We can now supplement our reduced-form evidence for

negative externalities from Section 2 with structural estimates that provide us with quantitative

guidance about the relative qualities of the domains, the advantage being that now we do not need

to guess which domains are stronger and which are weaker competitors.

For example, in the “games” search string, the Microsoft-owned Domain 1 receives the largest

number of clicks, yet the structural model yields that this domain has much lower quality than

Domain 3. The structural model attributes this large number of clicks to the domain’s frequent

placement in top positions (which presumably was done by Microsoft to promote the service). We

observe the same phenomenon for Microsoft’s Domain 3 in the “weather” search string. The lower

quality of this domain might be attributed to the domain’s description as a service with maps;

therefore, users might correctly think the domain does not contain weather information.

We investigated the domains advertised on the “sex” string and found that only Domain 1 is

directly relevant to the search query. Domain 2 is a general Internet shopping website, Domain 3

is a health nutrition store, and Domain 4 is a spam domain with no content other than sponsored

links. Our estimates of domain qualities are consistent with these findings. However, Domain 4 is

estimated to have a relatively high quality. We cannot reveal the domain name due to Microsoft’s

privacy restrictions, but we can say it is very well chosen, suggesting success in sexual life.

Table 7 presents our estimates of satiation and user heterogeneity. The interpretation of the

standard deviation σδ is that different users’ probabilities of clicking on a given ad in a given position

may differ, on average, by a factor of expσδ ' 9.

Table 8 contains estimates of the Bayesian signaling model. Overall, we find statistically sig-

nificant evidence for uncertainty about ad quality. Moreover, the users employ both position and

description to form their beliefs prior to clicking. We allow the precision of the priors to vary across

search strings and users. Consequently, we find small but statistically significant differences be-

tween search strings. Likewise, we find relatively small and insignificant heterogeneity across users.

Additionally, we find the standard deviation of the prior is about 4-5 times higher than the standard

deviation of the description signal. In other words, the description provides about 4-5 times more

precise signaling of the quality than position.21

21In an alternative model in which users learn about va+εai we find statistically significant heterogeneity in position
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To interpret the quantitative significance of the externality parameters R and σR, we perform

two counterfactual exercises. In the first, we consider a hypothetical impression with only two

advertisements, and compute the effect of satiation on the CTR of the advertiser at position 2.

That is, we calculate the probability of the advertiser in slot 2 getting clicked when the user is not

satiated by the ad in slot 1 (e.g., when a low-quality ad is placed at position 1), and compare it

with the CTRs with satiation for different actual competitors placed in slot 1. Table 9 presents

the results. The biggest losses due to satiation occur in the “sex” string, on ads that compete with

Domain 1 at position 1. For example, the CTR of Domain 3 at position 2 would be almost three

times higher if it did not compete with Domain 1 at position 1. On the other hand, Domain 1

itself, being a high-quality ad, does not suffer much from externalities: its CTR at position 2 would

have been only 40%-50% higher had it faced no competition from position 1.

priors across users.
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Games Weather

(d1) (d2) (d3) (d4) (d5) R=0

(d1) - 0.057
(0.004)

0.053
(0.003)

0.063
(0.004)

0.070
(0.005)

0.121
(0.003)

(d2) 0.112
(0.003)

- 0.084
(0.003)

0.096
(0.004)

0.112
(0.004)

0.159
(0.002)

(d3) 0.138
(0.011)

0.114
(0.012)

- 0.126
(0.011)

0.141
(0.011)

0.199
(0.007)

(d4) 0.094
(0.004)

0.076
(0.004)

0.068
(0.003)

- 0.094
(0.004)

0.144
(0.003)

(d5) 0.064
(0.002)

0.056
(0.001)

0.053
(0.002)

0.059
(0.001)

- 0.126
(0.003)

(d1) (d2) (d3) (d4) (d5) R=0

(d1) - 0.049
(0.001)

0.053
(0.001)

0.045
(0.001)

0.054
(0.001)

0.080
(0.003)

(d2) 0.041
(0.001)

- 0.044
(0.001)

0.037
(0.001)

0.045
(0.001)

0.062
(0.001)

(d3) 0.027
(0.001)

0.028
(0.002)

- 0.027
(0.001)

0.034
(0.001)

0.045
(0.002)

(d4) 0.054
(0.001)

0.058
(0.002)

0.064
(0.003)

- 0.065
(0.002)

0.097
(0.004)

(d5) 0.027
(0.001)

0.027
(0.001)

0.032
(0.001)

0.026
(0.001)

- 0.048
(0.002)

White pages Sex

(d1) (d2) (d3) (d4) (d5) R=0

(d1) - 0.136
(0.004)

0.156
(0.004)

0.128
(0.003)

0.167
(0.005)

0.285
(0.004)

(d2) 0.068
(0.001)

- 0.097
(0.001)

0.078
(0.001)

0.110
(0.002)

0.223
(0.005)

(d3) 0.056
(0.001)

0.064
(0.001)

- 0.059
(0.002)

0.080
(0.004)

0.190
(0.005)

(d4) 0.083
(0.002)

0.103
(0.003)

0.116
(0.004)

- 0.128
(0.003)

0.250
(0.006)

(d5) 0.047
(0.001)

0.050
(0.002)

0.059
(0.001)

0.049
(0.001)

- 0.165
(0.002)

(d1) (d2) (d3) (d4) (d5) R=0

(d1) - 0.169
(0.005)

0.184
(0.004)

0.158
(0.010)

0.187
(0.004)

0.258
(0.008)

(d2) 0.056
(0.002)

- 0.089
(0.002)

0.071
(0.003)

0.094
(0.002)

0.150
(0.003)

(d3) 0.039
(0.001)

0.045
(0.002)

- 0.042
(0.001)

0.056
(0.001)

0.113
(0.002)

(d4) 0.062
(0.005)

0.093
(0.010)

0.112
(0.007)

- 0.115
(0.008)

0.179
(0.013)

(d5) 0.032
(0.001)

0.038
(0.001)

0.044
(0.001)

0.036
(0.002)

- 0.105
(0.003)

Table 9: CTRs of the counterfactual impressions with only two advertisers. Each cell contains a CTR of the advertiser in position 2

for different ad configurations. Specifically, each row represents a given domain in position 2 and each column prescribes a different

competitor domain in position 1. The last column with R = 0 presents CTR of an ad in position 2 conditional on a “dummy competitor”

in position 1 that creates no satiation.
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We perform the second counterfactual exercise on the actual data. We simulate the CTRs of

selected domains in the observed impressions in the hypothetical world without satiation (i.e., in

which Ri = 0) and compare the results with the actual empirical CTRs. Table 10 presents the

simulation results. Unlike the previous exercise, the size of the loss now depends not only on the

domain’s own quality but also on how often it faces strong competitors in the impression. A good

example is given by comparing Domain 1 in “games” to Domain 4 in “white pages.”Both domains

have similar CTRs; however, Domain 4 gains much more in the counterfactual. Although better

domains generally tend to lose less CRT due to externalities, the magnitude of the loss varies by

search string. We also calculate that the total number of clicks in our dataset would have increased

by 51% had satiation been absent.22

We can also quantify the effects of user uncertainty about relevance by considering the counter-

factual in which this uncertainty is resolved before the user starts clicking. (For example, the search

engine can reduce uncertainty by offering longer website descriptions, user comments, or experts’

opinions.) It is straightforward that eliminating user uncertainty will raise user welfare. However,

because of satiation, we are a priori unclear how doing so would affect CTRs of ads. Table 10

presents the CTR effects on each domain of removing uncertainty about the relevance of ads. We

note that the ads benefit in a heterogeneous way, which depends on their quality, composition of

competitors in the data as well as positions they are usually presented on. In general, if the mean

of the position prior is close to the true quality of an ad, the ad benefits less from removing the

uncertainty. A good example is Domain 1 in the “games” search string. Its quality is close to the

average quality of ads usually presented in the same position. The same is true for all aggregated

domains marked as 5, which have low quality and are usually presented in low positions that have

pessimistic priors.

5.1 Goodness of fit

To assess the fit of our model we investigate how well our model explains non-sequential clicks.

Our model must be able to predict these events because they provide our main motivation for

developing a new structural model. We predict that among impressions that contain any clicks,

users skip positions 44% of the time. In the data, we computed this number to be 46%, which

means we can accurately predict the frequency of these events.

22We cannot estimate the loss of advertiser profits caused by externalities due to lack of click conversion data. This

issue is left for further research.
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Search string

games weather white pages sex

Domain 1

True data 0.093
(0.0011)

0.075
(0.0012)

0.131
(0.0012)

0.251
(0.0038)

R=0 0.142
(0.0021)

0.097
(0.0019)

0.255
(0.0043)

0.329
(0.0049)

No uncertainty 0.092
(0.0011)

0.077
(0.0016)

0.139
(0.0027)

0.257
(0.0038)

Domain 2

True data 0.042
(0.0013)

0.021
(0.0007)

0.086
(0.0007)

0.067
(0.0018)

R=0 0.094
(0.0022)

0.039
(0.0016)

0.187
(0.0035)

0.125
(0.0030)

No uncertainty 0.042
(0.0019)

0.021
(0.0007)

0.087
(0.0014)

0.066
(0.0017)

Domain 3

True data 0.133
(0.0056)

0.023
(0.0010)

0.068
(0.0010)

0.029
(0.0012)

R=0 0.203
(0.0073)

0.037
(0.0018)

0.157
(0.0031)

0.073
(0.0021)

No uncertainty 0.141
(0.0040)

0.022
(0.0010)

0.068
(0.0013)

0.028
(0.0012)

Domain 4

True data 0.045
(0.0014)

0.012
(0.0004)

0.091
(0.0004)

0.129
(0.0084)

R=0 0.091
(0.0027)

0.045
(0.0019)

0.206
(0.0052)

0.194
(0.0099)

No uncertainty 0.045
(0.0018)

0.012
(0.0005)

0.094
(0.0038)

0.130
(0.0089)

Domain 5

True data 0.011
(0.0003)

0.003
(0.0002)

0.006
(0.0002)

0.013
(0.0009)

R=0 0.033
(0.0012)

0.009
(0.0006)

0.025
(0.0009)

0.040
(0.0020)

No uncertainty 0.011
(0.0003)

0.003
(0.0001)

0.005
(0.0002)

0.012
(0.0009)

Table 10: Counterfactual domain CTRs if there are no externalities, i.e., R = 0, and if there is no

uncertainty, i.e., σ = 0.
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Figure 1: Average probability of choosing a correct bundle sliced by time and keyword.

To test the stationarity assumption, we investigate whether the goodness of our model’s fit

depends on time. We start by computing the predicted probability of choosing the observed bundle

for each impression in the data. Next, we slice the data into eight equal subsamples by time and

compute the average of the probabilities for each subsample. The goal is to investigate if the

prediction error of the model does not fluctuate too much over time, which could be indicative

of a non-stationary environment. Figure 1 presents the results. We find that the probabilities of

choosing observed bundle are very stable. This stability suggests that true ad-quality measures as

well as other parameters of the model do not change over time. Moreover, we observe more or less

the same fit across search strings, which reassures us that we do not overfit or underfit any of the

search strings.

Another common test of specification and fit is the test of overidentified restrictions. Under

the null hypothesis of the correctly specified model and correct distributional assumptions of the

moment conditions, namely clustering and serial correlation, the following statistic

HT =
1

T

(
T∑
t=1

G′t

)
WT

(
T∑
t=1

Gt

)

is asymptotically distributed as χ2 with 29 degrees of freedom (number of moment conditions minus

number of parameters). We obtain that HT = 44.2; we cannot reject the null hypothesis using 2.5%-

level test.
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6 Counterfactual Matching Policies

This section presents the outcomes of simulations that compare user welfare and the total CTR for

counterfactual matching policies of ads to positions.23 In particular, we are interested in considering

the matching policy that maximizes the users’ expected utility and a potentially different policy

that maximizes the total CTR.

A natural candidate for an optimal matching policy is Assortative Matching (AM), in which

the ads are displayed in decreasing order of their quality va. Assortative matching is feasible for

Microsoft, provided that the company knows the qualities of the different ads. We suspect that

Microsoft has some estimates of quality though they might not be perfect. This policy in fact

maximizes the total CTR and users’ expected utility in the cases of our model without externalities

and uncertainty:

Proposition 6.1. If Ri = 0, σ = 0 and each ad receives a CTR of less than one in each position,

then assortative matching maximizes both the total CTR and the user’s expected utility.

Proof: It suffices to show that the proposition is true conditional on any given realization of the

user’s random effect δi; this implies that the same is true on expectation over δi.

Recall that the CTR on an ad of quality v in a position with cost f is π (v, f) = Pr {v + ε > f} =

max
{
ev−f , 1

}
= ev · e−f . Because this function is supermodular in

(
ev, e−f

)
, a well-known result

implies that assortative matching maximizes the total CTR.

The user’s expected utility from having an ad with quality v at position with cost f can be

computed as ∫ ∞
0

max {v + ε− f, 0} e−εdε =

∫ ∞
f−v

(ε− f + v) e−εdε = ev−f = π (v, f) .

So in this benchmark model the user’s expected utility coincides with the CTR and is again maxi-

mized by assortative matching.

When Ri > 0, the conclusion no longer holds, and we can find examples in which the total CTR

or expected user utility is not maximized by AM. The intuition for how assortative matching can

be improved upon for users is that for two ads with the same quality va, putting the ad with the

higher posterior variance in a higher position might be optimal so as to reduce the user’s cost of

learning its quality. Similar changes raise the CTR but to a lesser extent.

23 Because we do not observe the advertisers’ bids, we use the total CTR as our proxy for the search engine’s

revenue.
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Example 6.1. Suppose Ri > 0. There are two ads: A = {1, 2}, with ad 2 having no (or very

negligible) posterior uncertainty. The position clicking costs are f2 > f1. Compare the two possible

impressions: (1, 2) and (2, 1). A user can have four possible types of optimal strategies: (a) always

click on both ads, (b) always click on zero ads, (c) always click on one ad, and (d) click on the

uncertain ad 1, then click on ad 2 if and only if ad 1 proves to be much worse than expected. Of

course, the optimal strategy may depend on the impression as well as the user’s realized utility.

The expected payoffs from strategies (a) and (b) are the same on the two impressions. Because

strategy (c) yields the same payoff as if Ri = 0, the expected payoff from this strategy is maximized

by assortative matching, according to the above proposition. However, the payoff from strategy (d)

is maximized on impression (1, 2), because with some probability, the user does not click on the

high-cost slot. Thus, for parameter values for which strategy (d) is sufficiently likely to be optimal

to the user on both impressions, displaying the uncertain ad above the certain ad is optimal, even if

the certain ad has higher expected quality.

Similarly, if no externalities are present, that is, if Ri = 0, but uncertainty does exist, the

assortative matching might be sub-optimal both for maximizing consumer surplus and for CTR.

Example 6.2. Suppose there are two ads with description signals x1 = 10 and x2 = 5, which are

equal to true qualities, and no user heterogeneity exists. The position priors have means 10 and 1,

and the variance of the description noise and position priors is 1. The clicking costs are f1 = 0

and f2 = 4. When the ads are matched assortitatively, that is, ad 1 is placed on position 1, the

posterior means are 10 and 3, CTR is 1, and the utility is 10. When ad 1 is placed on position 2,

the posterior means are 7.5 and 5.5, the CTR is 2 and utility is 11.

We simulate both user- and CTR-optimal matching policies on our data, and compare them to

both assortative matching (ad qualities are obtained by estimating EOS model using OLS) and the

actual data. As Table 11 shows, we find assortative matching would raise user welfare by 11% and

the total CTR by 8%. This matching policy does not coincide with either the user optimal policy

and CTR optimal policy. The former raises welfare by 33%, whereas the latter raises CTR by 23%.

Both of these policies are Pareto improvements over assortative matching.

The above assertions treat the average CTR as a proxy for total revenue. In reality, however, the

revenue is a sum of clicks weighted by costs per click. When the costs per click are heterogeneous,

one can give examples under which assortative matching gives suboptimal results. Consider the

following example from the data.
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Utility CTR

Data 0.25
(0.004)

- 0.18
(0.001)

-

No uncertainty 0.25
(0.003)

+1.62%
(0.28)

0.18
(0.001)

+0.38%
(0.53)

Assortative 0.28
(0.007)

+11.24%
(2.15)

0.20
(0.003)

+8.39%
(1.32)

Max U 0.33
(0.004)

+32.78%
(0.99)

0.22
(0.002)

+21.18%
(0.78)

Max CTR 0.32
(0.006)

+27.41%
(1.29)

0.22
(0.002)

+23.20%
(0.86)

First best U 0.42
(0.007)

+69.13%
(2.08)

0.26
(0.002)

+42.13%
(1.21)

First best CTR 0.33
(0.006)

+32.01%
(1.73)

0.29
(0.002)

+57.89%
(1.40)

Table 11: Short run counterfactuals

Example 6.3. Take Domains 2 and 3 from the “games” search string, and ignore all the other

domains. In the data, we observe impressions when those domains switch places with each other.

One way to rationalize this fact is that the search engine is indifferent between both placements.

Moreover, suppose that the search engine is doing a bid-weighted assortative matching using the OLS

estimates of EOS model. We can therefore infer that the bids for those ads have to be proportional

to the inverse of the exponent of the OLS quality estimates, that is, exp(−0.65) and exp(−0.92).

One can take those bids and compute the search engine revenue under different matching policies of

those ads to first and second position. OLS assortative matching gives about 7% less revenue than

non-assortative matching.

Unfortunately, given the available dataset, separately identifying costs per click is impossible

without having data on advertisers’ bids or valuations.

6.1 First-best targeting

Next we examine the improvements that “first-best” targeting could achieve, that is, conditioning

the impressions on user’s utility characteristics εi, δi, Ri, user-specific priors as well as signals xi.

Such matching approximates the situation in which the search engine uses information about the

consumers, such as the search history or demographics, to tailor the impression. Table 11 shows

that moving toward first-best welfare-maximizing raises the users’ expected utility by 69% from the

actual data, and raises the total CTR by 42%. If we instead implement CTR-maximizing, first-best
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Utility CTR

Data 0.25
(0.003)

- 0.18
(0.001)

-

No uncertainty 0.25
(0.003)

+1.62%
(0.36)

0.18
(0.002)

+0.38%
(0.56)

Assortative 0.30
(0.010)

+22.59%
(4.15)

0.21
(0.005)

+16.82%
(2.70)

Max U 0.33
(0.003)

+34.49%
(1.10)

0.22
(0.003)

+21.98%
(1.41)

Max CTR 0.32
(0.004)

+28.49%
(0.98)

0.23
(0.002)

+25.17%
(1.07)

First best U 0.42
(0.006)

+70.16%
(2.86)

0.27
(0.003)

+51.45%
(1.70)

First best CTR 0.33
(0.006)

+34.97%
(2.34)

0.29
(0.004)

+61.64%
(1.99)

Table 12: Long run counterfactuals

targeting, we increase the CTR by 58%, however, with smaller gain to the utility (about 24%). The

fact that CTR-optimal matching raises consumer surplus suggests that extra profit opportunities

from exploring user-level targeting are also beneficial for the consumers; however, the welfare- and

profit-maximizing incentives are not perfectly aligned. Microsoft does have access to substantial

information about users’ browsing habits stored in “cookies” on their computers; this information

is especially rich for users who have opened “Microsoft Passport” accounts (special accounts that

offer a gateway to e-mail, Internet communicator, and many other services). To the best of our

knowledge, Microsoft did not target sponsored search results to individual users at the point of

our writing a first draft of this paper. However, targeting display ads within web pages is now

common (in particular Yahoo! and Google-Doubleclick are known for doing this). Our analysis

of full-information targeting can be viewed as an upper bound on what targeted advertising can

achieve.

6.2 Long-run counterfactuals

Because we estimate position priors separately from position cost, we can investigate the extent

to which users adapt their behavior to the changing matching policies. We computed utility- and

CTR-maximizing second- and first-best matchings under the assumption that position priors are

correct and have zero variance. In such a case, users would have no uncertainty about the quality of

advertising. Table 12 reports the results. Additionally, this table includes a baseline case without
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uncertainty in order to quantify additional gain from counterfactual matching policies. We find the

gain from second-best matching policies does not change much in the long run. For example, the

additional gain from “Max U” policy is about 34.5%, which is basically the same as the short-run

gain combined with the no-uncertainty gain reported in Table 11. The same seems to be true for

the long-run welfare impact in first-best matching. However, the long-run CTR impact of first-best

matching is significantly higher. For example, “Max U” brings about 51% more clicks in the long

run, compared to 42% in the short run (and 58% vs 62% for “Max CTR” policy). Therefore, we

conclude that forward-looking companies should be more willing to invest in learning users’ tastes.

However, we also find significant complementarities when removing uncertainty and conducting

user-level targeting together. Companies might therefore be willing to invest in both removing

uncertainty and targeting, even if investing in removing uncertainty alone is not profitable.

7 Conclusion

This paper provides empirical evidence of externalities among ads, user heterogeneity and user

uncertainty regarding the quality of ads in the sponsored search market. We provide this evidence,

using both reduced-form tests and a structural model of expected utility-maximizing users.

The advantage of the structural model is that we can estimate the impact of externalities and

uncertainty on CTRs of advertisers, the social welfare of consumers, and total CTR that is a proxy

for profits for the search engine. We find a significant impact of both uncertainty (usually in the

range of a few percent, with a maximal increase of a few percent of CTR for some advertisers) and

externalities (usually around a 50% drop in CTR) on advertisers’ CTR.

We also make counterfactual predictions for different ad-placement regimes and quantify “user

experience” as the average user’s expected utility. We find that an alternative ad-placement policy

could raise user welfare by 33%, and the increase could go up to 69% if information is available to

target the placement to specific consumers. This finding suggests a large potential for ad targeting

based on user level covariates, such as demographics or previous search history.

Because we separately identify the contribution of users’ expectations and position (behavioral)

cost to CTR differences between positions, we can evaluate long-run counterfactuals. We find that

short-run and long-run gains from counterfactual matchings are similar if the search engine cannot

target ads using users’ characteristics. If it could target ads to specific consumers, it would achieve

larger CTR gains (62% in long-run versus 58% in the short-run).
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In this paper, we are unable to model long-run user learning explicitly. For example, we cannot

evaluate how quickly users learn about the new ad-placement regimes. We believe studying long-run

user learning in more detail is important; however, our dataset did not allow us to do so, because

it does not track users beyond the single search session. This direction is important for future

research.
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A Numerical appendix

As mentioned in Section 4, Bellman equation (3.2) has to be solved for every S. There two com-

plications when solving this equation: (i) S is continuous state variable, (ii) integration on RHS of

the Bellman equation is burdensome. Note that the Bellman equation has to be solved millions of

times in order to estimate the model, thus every extra millisecond of computation of a standalone

DP problem counts. For this reason, we employ a series of efficient numerical approximations that

jointly interpolate the integral and the state S.

The integration of the right-hand-side of the Bellman equation is performed using Gauss-Hermite

quadrature with five nodes. Let yk be the normalized Gauss-Hermite grid points, then the quadra-

ture for integrating the posterior distribution of va(c)i has the following nodes

v̂a(c)i,k = µ̂a(c)i +
√

2σ̂a(c)iyk.

Consequently, we replace the Bellman equation (3.2) with its discretized version

Vi (C, S) = max

{
S1/(1+Ri) −

∑
n∈C

fn, max
c∈{1,..,N}\C

5∑
k=1

wkVi

(
C ∪ c, S + v̂1+Ri

a(c)i,k

)}
,

where wk are Gauss-Hermite weights. Under this discretization it suffices to consider a finite number

of values for S for each C, namely, the values of S from the set{∑
c∈C

v̂1+Ri
a(c)i,kc)

: kc ∈ {1, . . . , 6}

}
,

where v̂a(c)i,6 is equal to the true value of va(c)i. We need this extra point to evaluate policies at

the true values of va(c)i during the forward simulations. The above observations significantly reduce
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the state space without introducing additional approximation errors beyond the Gauss-Hermite

integration. For example, if C has three clicked ads, there are 63 relevant values for S which gives(
8
3

)
63 state points. Additionally, we find it is enough to consider bundles of a maximum of three

choices, because bundles of four are extremely rare in the data, and including them shifts the

moments by the negligible amount. In this case each dynamic program has 13,152 state points. 24

24The number of state points is computed as
(
8
3

)
36 +

(
8
2

)
26 +

(
8
1

)
16 + 1.
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