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Abstract

Dynamic pricing is a common tool to maximize sales in markets for perishable

goods with limited capacity and stochastic demand. We look at the relationship

between dynamic pricing and oligopolistic competition in the airline industry.

For this purpose, we estimate a dynamic oligopoly model of dynamic price com-

petition in a market with carrier exit using flight-level data. We discover that

dynamic pricing results in a Pareto improvement, increasing firm profits, and

consumer welfare. We break down the impact into two categories: price discrim-

ination and pricing on residual capacity (revenue management). We find that

price discrimination softens competition, whereas revenue management intensi-

fies it.
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1 Introduction

Dynamic pricing is a common technique for optimizing sales in markets with limited ca-

pacity and fixed utilization deadlines. This form of pricing is applied in various industries,

including hospitality, entertainment, and fashion; nevertheless, the airline industry is consid-

ered a pioneer and leader in this area. Airlines offer a fixed number of seats for the specific

departure date. With the help of sophisticated algorithms, the price of a seat fluctuates

as the departure date approaches and as a function of the plane’s remaining capacity. In

extreme circumstances, the identical airline seat advertised on the day of departure may

be several times more expensive than if quoted in advance. The resulting price dispersion

raises questions over the degree of market dominance and the capability of rent extraction

facilitated by sophisticated dynamic pricing (see Borenstein and Rose, 1994).

In this paper, we study the effect of dynamic pricing on consumer welfare and firms’

profits in the presence of oligopolistic competition. Specifically, we investigate the incentive

for firms to engage in dynamic pricing and the impact of sophisticated pricing strategies on

the distribution of rents between customers and competing firms. We propose a dynamic

oligopoly model in which companies set prices over time based on the capacity utilization

of themselves and their competitors. We employ daily-level data on prices and capacity

utilization to quantify demand uncertainty and inter-temporal preference heterogeneity. Us-

ing the estimates, we recompute pricing equilibria with and without dynamic pricing. We

subsequently compare consumer welfare and firms’ profits in both cases. We also highlight

two mechanisms that determine the split of surplus: price discrimination and revenue man-

agement.

The ability to alter the price over time provides at least two substantial benefits. First,

since the demand elasticity of consumers changes as the departure date approaches, time-

based dynamic pricing enables price discrimination. For instance, if inelastic business con-

sumers arrive late, the firm may wish to raise prices as the departure date approaches.

Second, given the stochastic nature of the demand for airplane seats, the airline may wish

to alter the price based on previous demand realizations and remaining capacity – a practice

called revenue management. For example, if historical sales were exceptionally high and

resulted in minimal remaining capacity, an airline is driven to increase the price. Using the

structural model, we decompose the effects of dynamic pricing into price discrimination and
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revenue management by examining an intermediate Nash Equilibrium in which time-based

price discrimination is permitted, but revenue management is not.

To identify the demand elasticity, we conduct an event study of the carrier exit in the

Seattle-Tuscon route. Seattle-Tuscon is a monopoly route that is seasonally operated by two

carriers. We concentrate on the brief time window surrounding the exit event to minimize

price endogeneity. In addition, we apply difference-in-differences identification by incorpo-

rating a San Diego-Boston duopoly control market with nearly identical pricing pre-trend.

Further, we investigate the external validity of our findings by simulating airline markets

with various levels of capacity constraint and horizontal differentiation.

We discover that leisure clients who arrive early are more price sensitive than busi-

ness customers who arrive late. Furthermore, we demonstrate that corporate customers are

more brand loyal. This heterogeneity rationalizes increasing fares as the departure date

approaches, which is ubiquitous in most airline routes. Subsequently, we use the prefer-

ence estimates to conduct a counterfactual that eliminates the ability to price dynamically.

Specifically, we compute a Nash Equilibrium in which all firms are constrained to set uniform

prices as the departure date approaches. We find that dynamic pricing leads to Pareto im-

provement raising consumer welfare and firms’ profits. Specifically, consumer welfare grows

by 3%, profits increase by 8%, and total welfare soars by 6%. In contrast, Williams (2022)

concludes that dynamic pricing reduces consumer welfare in a monopoly market. Since that

work considers different airline markets, we also provide an apples-to-apples analysis of the

interaction between market structure and dynamic pricing. For this purpose, we demon-

strate the effect of dynamic pricing after imposing a merger to a monopoly, keeping other

parameters the same. We find that dynamic pricing leads to a 14% decrease in consumer

welfare, an 8% increase in profits, and a nearly 5% decrease in total surplus. The comparison

stresses the importance of competition when allowing dynamic pricing.

To disentangle the effects of price discrimination and revenue management, we explore

an intermediate case in which revenue management is prohibited, but price discrimination is

permitted. For this purpose, we compute a Nash Equilibrium in which the companies must

commit to the pricing schedule as the departure date approaches. As a result, airlines are

barred from adjusting rates based on past sales and residual capacity but can still engage in

third-degree price discrimination. Perhaps not surprisingly, we observe lower prices in the

early elastic market and higher prices in the late inelastic market. Notably, the prices under
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price discrimination are, on average, higher than the uniform price and uniformly higher

than the prices under simultaneous price discrimination and revenue management. Also, the

quantity supplied in the intermediate case is lower than under uniform and fully dynamic

pricing. Consequently, we find that price discrimination results in a 10% loss in customer

welfare (compared to a 3% rise when revenue management is included) and an 9% increase in

profits compared to uniform pricing (compared to a 8% with revenue management). Putting

all the results together, we conclude that price discrimination softens competition, whereas

revenue management intensifies it.

The mechanisms behind our results rely on shifting the fixed capacity over time as the

departure date approaches and the varying efficiency of capacity utilization. Price discrimi-

nation causes an initial decrease in prices and an increase in sales in the early market, which

leads to extra scarcity in the late market. For example, for almost all periods, the probabil-

ity of monopolization is greater under price discrimination than under uniform and dynamic

pricing, which leads to upward pricing pressure and deadweight loss in the late market. As a

result, profits improve, but the welfare of late-arriving business consumers declines by more

than 11%. Revenue management leads to more efficient capacity utilization because firms

can throttle prices in response to past sales and lose a portion of their commitment power.

Specifically, our numbers indicate that monopolization under full dynamic pricing is unlikely,

which removes some scarcity-related upward pricing pressure in the late market. As a result,

business travelers break even after the introduction of both price discrimination and revenue

management – they pay higher prices but are more likely to obtain a seat. At the same time,

the welfare of leisure travelers doubles.

In an effort to generalize our findings, we consider markets with different capacity con-

straints and levels of horizontal differentiation. When we decrease the capacity by 25%, we

observe a 6% uptick in total welfare, which presents a one percentage point enhancement

over the 5% increase found with the original capacity. Conversely, augmenting the capacity

by 25% leads to a rise of 3.9% in total welfare. These findings suggest that the impact of

dynamic pricing on market efficiency is directly related to the stringency of the capacity

constraint. Furthermore, we find that larger horizontal differentiation tends to amplify our

results, leading to an increase in total surplus and a more significant allocation of additional

surplus to consumers. This observation is intuitive because when horizontal differentiation is

large, scarce late-market capacity can be particularly harmful to consumers, and hence, any
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measures to mitigate such scarcity, such as dynamic pricing, become significantly beneficial.

This research is related to several streams of literature. It adds to the work on airline

pricing, competition, and air travel demand. The airline industry is a textbook example

of dynamic pricing (McAfee and Te Velde, 2006). Though airlines’ pricing techniques have

attracted advocates from many industries, their implications are not well understood (Boren-

stein and Rose, 2014). Additionally, the industry’s competitiveness has received attention

from both the regulators and academics (Borenstein, 1992).

In an attempt to start filling the gap, we (i) implement a research design and collect

high-frequency data and (ii) construct and estimate a large dynamic game. Previous work

(e.g., Berry, 1990, Berry et al., 2006, and Berry and Jia, 2010) estimates air travel demand

and supply using static Nash equilibrium models and aggregate data.

Other related work includes structural papers by Lazarev (2013), Williams (2022), and

Aryal et al. (2022). These papers focus on the monopoly markets, which are more com-

putationally tractable. As a result, these models may allow for some features we had to

assume away. Lazarev (2013) studies the implications of intertemporal price discrimination

and allowing ticket resale. Notably, they explicitly model connecting traffic and forward-

looking consumers. Williams (2022) studies the impact of removing dynamic pricing on

welfare. They include more markets in their analysis, but as a result, they must make

stronger assumptions regarding price endogeneity. Aryal et al. (2022) allow second-degree

price discrimination across the economy and business fares and endogenize seat release policy.

In a complementary working paper, Hortaçsu et al. (2022) study dynamic pricing in

duopoly airline markets. Our paper focuses on empirical analysis and provides a more

complete treatment of unobserved heterogeneity and price endogeneity. Hortaçsu et al.

(2022) focus on a theoretical analysis of a novel continuous-time pricing model, while our

model is an adaptation of the empirical framework by Ericson and Pakes (1995) (1995).

These approaches lead to different conclusions: we find dynamic pricing increases consumer

welfare, while Hortaçsu et al. (2022) show consumer surplus falls. In addition to welfare

analysis, our approach allows us to study the interaction between market structure and the

effects of dynamic pricing through a merger counterfactual.

The methodology in this work relates to the structural modeling of dynamic oligopoly

(Ericson and Pakes, 1995). In particular, it studies a non-stationary and stochastic setting

of perishable good pricing. There is an adjacent line of research on pricing in a durable good
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oligopoly. This literature is recent but fruitful (e.g., Goettler and Gordon, 2011, Chen et al.,

2013, and Hendel and Nevo, 2013). Some approaches focus on the dynamics in consumer

demand (e.g., Hendel and Nevo, 2006; Gowrisankaran and Rysman, 2012).

Much of the existing work on perishable good pricing investigates the role of demand

uncertainty (Gallego and Van Ryzin, 1994, Sweeting, 2012, and Sweeting, 2015). Building on

those insights, we model demand with both stochastic variability and temporal heterogeneity.

The demand system builds on a Poisson arrival process and a discrete choice framework. The

two processes translate into a single, simple, and tractable sales process.

Our analysis builds on the theoretical work on dynamic pricing and revenue manage-

ment. For example, Deneckere and Peck (2012) study a dynamic pricing model in which

a continuum of firms produce one unit of output. In addition, a growing body of work in

operations research uses game theory to model competitive revenue management (see Lin

and Sibdari, 2009, Levin et al., 2009, and Gallego and Hu, 2014). A more recent paper

by Dana Jr and Williams (2022) considers intertemporal competition with deterministic

demand and endogenous capacity. Our model considers exogenous capacity but allows for

stochastic demand. In comparison to the theoretical work, we take an empirical approach

and structurally uncover demand and supply primitives. The estimates allow us to assess

the impact of dynamic pricing using counterfactual exercises.

The paper is organized as follows. Section 2 presents the empirical setting and data

collection procedure. Section 3 describes our data. Section 4 sets up the model. Section 5

discusses the empirical strategies and identifications. Section 6 shows the estimation results.

Section 7 performs the counterfactual analysis. Finally, Section 8 concludes.

Next section contains a brief overview of the airline industry.

2 Airline industry

The airline industry is an important contributor to economic development. In 2015, the

industry generated $767 billion revenue and transported 3.3 billion passengers according to

the International Air Transport Association (IATA). Historically, air travel in the U.S. was

viewed as a public good.

The industry operated under governmental subsidies and regulations (Borenstein and

Rose, 2014). To avoid “destructive competition,” the Civil Aeronautics Board (CAB) con-
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trolled airfares using a nonlinear distance-based formula (called the Standard Industry Fare

Level or SIFL). CAB disallowed discounts and promotions on the grounds they disadvantaged

competitors or were unduly discriminatory across passengers.

In 1978, the Airline Deregulation Act abruptly removed restrictions on fares and entry.

It transformed the strictly regulated airline industry to an innovative, dynamic, and complex

one (Borenstein, 1992). Among others, the market liberation spurred unimpeded competition

and strategic behavior among airlines, triggering airlines’ development and implementation

of dynamic pricing systems.

Airlines are credited as the pioneers of revenue management. Revenue management was

originally called yield management, although now the latter term is outdated. The meaning

of revenue management can be very broad in many cases, however, the fundamental concept

has not changed. Profits are optimized contingent on product availability, in other words,

on the actual number of seats currently booked on a specific flight. Thanks to modern

information technology, the practice of revenue management is common in today’s airline

industry. This has been documented by previous research (Escobari, 2012).

Figure 1 plots the average price path for JetBlue Flight 19 from March 01, 2016, to June

01, 2016. In line with the well-known industry feature, airfares are on average more expensive

closer to departure date (McAfee and Te Velde, 2006). The increasing price path is viewed

as evidence of (intertemporal) price discrimination. Generally, leisure consumers with higher

price elasticities tend to arrive early. Business travelers who are less price sensitive tend to

arrive late. Airlines are thus able to screen consumers based on the times of their arrivals.

There has been much discussion on whether the industry is subject to excessive competi-

tion or excessive market power. Airlines claim that the industry is “ultra-competitive.” This

is supported by more than 100 bankruptcy filings in the U.S. airline industry since 1978.

Every major U.S. interstate airline existent at the time of deregulation in 1978 has since

filed a bankruptcy request.

The industry’s profitability may fluctuate due to cyclical demand, sticky fixed costs, and

repeated disruptive business innovations. Factors like entry/exit and short-run profitability

are not enough to understand the whole picture. One aspect of airlines’ competition is with

respect to fares. The internet has facilitated great transparency in airfares, and consumers

can search them at presumably small cost. If flight tickets are relatively undifferentiated

across airlines, one would expect airlines’ price competition to be fierce. If airlines are
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sufficiently differentiated, monopoly powers may arise.

In an effort to mitigate competition, airlines introduce a loyalty inducing marketing device

called the frequent flyer program (FFP). FFPs reduce travelers’ cross-price elasticities by

encouraging them to buy tickets from a single airline. As a result, it increases brand loyalty

and switching cost (Borenstein, 1992).

3 Data

We collect high-frequency panel data of posted prices and seat maps from airlines’ web-

sites. We utilize a scraping script to search for all nonstop flights departing within 100 days

for a specified set of routes. We track the rates and remaining seat count for each flight. We

focus on economy class and disregard seat and fare distinctions. In particular, we utilize the

lowest available economy fare to approximate pricing and the number of remaining economy

seats to approximate capacity. The scraping script runs daily from March 17, 2016, to April

15, 2016. For approximately 5% of the data we scrapped the prices twice per day. There

is less than 14% chance that the price changes in the middle of the day. If the consumers

arrive uniformly using daily pricing data may affect less than 7% consumers.1

A seat map is a public interface connected to airlines’ real-time availability data. Airlines

maintain real-time inventory data (CRSs) in their computerized reservation systems. Most

airlines have outsourced their computer reservation systems (CRSs) to global distribution

systems (GDS) providers such as Amadeus, Sabre, Galileo, and Worldspan. GDS businesses

strive for accurate seat maps. According to the website of Amadeus, “Amadeus Interactive

Seat Map allows airlines and travel agents to deliver superior service to passengers by dis-

playing real-time and accurate seat information... Enhance customer service by providing

them with seat choices based on accurate, real-time availability.”2 Despite this, it is possible

that the seat map data will produce a noisy measure of residual capacity. For instance,

airlines are prone to reserve better seats for elite passengers; consequently, some seats that

appear to be occupied may be accessible.3 Conversely, certain tickets may receive a delayed

1Internet-collected high-frequency price and sales data have previously been used for academic research,
see McAfee and Te Velde (2006), Lazarev (2013), Escobari (2012), Clark and Vincent (2012), and Williams
(2022).

2See www.amadeus.com for an overview of the Amadeus interactive seat map.
3JetBlue tends to reserve a constant number of seats as a function of the number of days till departure.

The average number of reserved seats is 10.6 one day before departure and 11.5 fifty days in advance.
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seat assignment, which may cause us to overestimate the remaining capacity.4 Seat maps

may also conflate new bookings and cancellations. Specifically, if two seats were sold and

one seat was canceled, our seat maps would yield a sale of a single seat. We rarely detect

negative sales, which we reset to zero.

Notwithstanding its shortcomings, according to our knowledge, seat map data is the best

publicly available disaggregated data on airline sales. As a matter of fact, airlines use web

scraping to obtain competitive intelligence on schedules and fares. The pricing and revenue

management team examines data from competitors’ websites and employs algorithms to

determine if fares should be adjusted.5 Consequently, airlines’ and our measurement errors

are likely to be comparable when evaluating the capacity of competitors.

An alternative data set used in the airline literature is the “Airline Origin and Destination

Survey” (DB1B) collected by the U.S. Department of Transportation (DOT). The data

reports a random sample of 10% of all domestic airline tickets at the quarter-route level.

This data set is unfortunately highly aggregated. For example, it does not report the date a

ticket is priced or purchased or the date at which the flight departs. Therefore, DB1B would

not be enough to investigate dynamic pricing.

3.1 Route selection

We follow a systematic route selection procedure similar to Williams (2022). To accomplish

this, we utilize two data sources. First, we analyze the DB1B data collected for the first

quarter of 2014 to obtain summary statistics for the majority of domestic airline routes in

the United States. Second, we manually collect additional information from Google Flights.

In particular, we searched for 17,392 randomly generated pairs of domestic airports and

recorded the prices of the non-stop tickets. This search covers over 60% of all possible

combinations among 237 major U.S. airports. Using DB1B and Google Flights data, we

determine which routes match the following criteria.

Free seat assignment. We consider routes where consumers can select seats for free at the

time of purchase. This selection allows us to minimize the measurement error in capacity

caused by seats that were ticketed but not assigned. For example, we exclude Southwest,

4Measurement error in capacity due to seat blocking and late assignment may cause us to underestimate
the importance of revenue management. This is because supply-side pricing equations may suffer from
attenuation bias, and because seat-blocking is a substitute to revenue management.

5See Airline Management Magazine, 2007, Issue 2, p. 18.
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that does not allow any advance seat assignment and Spirit, that charges consumers for

advance seat reservation. We keep the following airlines American, Delta, JetBlue, Alaska,

United, Hawaii, and Virginia. We also exclude routes that offer “basic economy” fares, since

these seats are typically not assigned in advance.

Pricing of round-trip tickets. We only consider routes where round-trip tickets are priced

as two one-way tickets. Such pricing allows us to approximate round-trip tickets with two

independent one-way tickets. Conveniently, this restriction applies to the majority of Alaska

and JetBlue itineraries.

High non-connecting traffic. We select routes with at least 80% non-connecting traffic to

avoid modeling network pricing.

Minimal number of daily flights. We are interested in the interaction between competition

and dynamic pricing, but we aim to avoid computing equilibria with many active firms. As

a result, we focus only on duopoly markets. In addition, to avoid the complexity of multi-

product pricing, we select routes where each airline flies a single flight daily, with some

exceptions during peak-demand departure dates.

The selection rules lead us to a final sample of five routes: Seattle-Tucson (SEA-TUS),

San Diego-Boston (SAN-BOS), New York-Sarasota (NYC-SRQ), New York-Aguadilla (NYC-

BQN), and New York-San Antonio (NYC-SAT). These routes are serviced by JetBlue, Delta,

Alaskan, and United airlines, which are among the top six domestic carriers in the United

States. We monitor all nonstop flights on the five routes March 17, 2016, to April 15, 2016.

During this period, the dataset includes 57,077 observations of daily flight fares and inventory

for 2,561 flights.

We aim to identify price elasticity using the exogenous variation in choice sets. For this

purpose, we consider two routes: a control route in which there are no changes to the choice

set and a treated route in which the choice set changes from duopoly to monopoly. We begin

by identifying a treatment route. From December 2015 to March 2016, Alaska and Delta

offer daily direct flights on the Seattle-Tucson route, making it a duopoly.

Alaska entered the Seattle-Tucson route in 2000 by offering year-round daily nonstop

flights. Delta added a weekly nonstop flight from Seattle to Tucson International Airport

in December 2014 as part of a significant service expansion from Seattle Airport. In the

same year, Delta added Seattle as a hub, which created a “turf war” with Alaska, whose

headquarters and central hub are in Seattle. Delta announced the Seattle-Tucson connection
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as seasonal, scheduled to operate between December 2015 and April 2016. Before March 31,

consumers seeking nonstop connections could pick between Alaska and Delta; beginning in

April, they could only fly Alaska. We refer to this transition from duopoly to monopoly

as “exit,” although we acknowledge that the connection was seasonal, which was common

knowledge. Our data includes departure dates preceding and following the exit.6

To adjust for any seasonality, we employ a control route, San Diego-Boston, whose average

pricing trend closely parallels Seattle-Tucson before the exit. By combining the exit (treated)

route with the control route, we can recover the price elasticity of demand using difference-

in-differences style identification. JetBlue and Alaska are the relevant carriers on the San

Diego-Boston route. JetBlue began service on this route in 2007, followed by Alaska in 2013.

As explained later, our identification assumption allows for common seasonality with the

control route. Therefore, we do not permit demand discontinuities on March 31 that are

exclusive to the Seattle-Tucson connection. To exclude confounding factors, we analyzed

supply at airports in Tucson and Seattle around March 31. During our sampling period,

there were 23 daily nonstop flights to or from Tucson airport. Four of the 23 flights were

seasonal, including Delta’s Seattle-Tucson connection, which ended in March 2015. The

remaining 3 seasonal flights (Alaska’s Portland-Tucson, Delta’s Minneapolis-Tucson service,

and Southwest’s Oakland-Tucson service) operated from November to June. Regarding the

Seattle airport, Delta had 60 nonstop flights, 12 of which were seasonal. Two of the 12

seasonal flights ended in March, including the focal Seattle-Tucson connection. Four of the

12 flights concluded in April. The last six flights ended in August.

Seattle is the largest airport for Alaska, accounting for 18% of all of Alaska’s traffic in

the first quarter of 2016. San Diego is the sixth largest airport for Alaska and accounts for

3% of Alaska’s traffic. Boston is the 26th largest airport for Alaska and accounts for 1%

of Alaska’s traffic, while Tucson accounts for 0.4% of Alaska’s traffic. Boston is the largest

airport for JetBlue, accounting for 13% of all of JetBlue’s traffic in the first quarter of 2016.

On the other hand, San Diego only accounts for 0.8% of JetBlue’s traffic.

To avoid modeling network pricing, we keep the price of one-stop segments constant as

we vary the price of direct routes. This assumption is plausible since the particular routes

we study are relatively small and are unlikely to affect the prices of one-stop segments that

6Conveniently, because Delta’s “exit” was anticipated and occurred more than once, Alaska did not have
to learn how to price after the exit. Thus, learning and predatory pricing are not likely phenomena in our
case.
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contain much larger routes. As a result of this assumption, one-stop traffic enters an outside

option in our choice model.

Using American Travel Survey,7 we compute the average share of self-reported business

travelers from or to a given city pair (i.e., San Diego-Boston and Seattle-Tucson) as a measure

for the share of business types (see Borenstein, 2010). The share of business types is 0.40 for

San Diego-Boston and 0.30 for Seattle-Tucson. The average share of business types across all

cities is 0.36, with a standard deviation of 0.10. Thus, the city pairs studied in the current

paper are not outliers regarding the share of business travel.

3.2 Data description

Table 1 describes the research design with the Seattle-Tucson treated route and the

Boston-San Diego control route. In particular, a market defined as a departure date for

a particular city-pair and direction. We restrict the analysis to departure dates within a

30-day window centered on the exit event, reducing price endogeneity due to unobserved

route-level demand shocks. In other words, we only use flights that depart from March 17,

2016, to April 15, 2016. We consider a pricing window of 49 days before departure, which

results in a triple panel. Specifically, three untreated blocks comprise

15︸︷︷︸
departure dates

× 4︸︷︷︸
carrier-directions

× 49︸︷︷︸
pricing dates

= 2, 940︸ ︷︷ ︸
observations

.

As described above, the untreated duopoly block has 2,940 observations. The treated block

has 1,470 observations since it contains only one operating carrier. Overall, we obtain 10, 290

observations on daily flight-level prices and sales. Table 2 reports the summary statistics of

the data. On average, a flight sells 1.11 seats each day. For more than half of the days, a

flight sells no tickets. As the departure date approaches, the price climbs on average by $7.5

per day. An average flight sells 47.39 seats seven weeks before departure.

The flight-level Gini coefficient in the bottom row of Table 2 captures the intertemporal

price dispersion for a given flight. The mean of the flight-level Gini coefficient equals 0.21.

In other words, an expected absolute difference between two randomly selected prices for the

same flight is 42%. The large dispersion of airfares is consistent with prior research.

7The survey was carried out by the Bureau of Transportation Statistics of the U.S. Department of Trans-
portation in 1995.
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Figure 2 shows the trajectory of pricing and available seats as the departure date ap-

proaches for a representative flight departing on March 25, 2016. The flight had more than

100 remaining seats 90 days before departure. On the departure day, seventeen tickets re-

mained unsold. Prices range between $150 and $600. The shaded regions highlight pricing

patterns suggestive of revenue management. The capacity sells out quickly in the 8-6 weeks

to the departure area, so the algorithm is sharply increasing the price. Subsequently, sales

flatten in the 6-4 region, resulting in a price decrease. Lastly, prices in the 2-0 region increase

dramatically, which is consistent with price discrimination.

We use two sources of price variation when estimating price elasticity. As previously

noted, we employ a 2 × 2 difference-in-differences panel data. The 2 × 2 design allows the

exit decision to correlate with the aggregate demand trend shared with the control route. We

also limit the dataset to a small time frame surrounding the exit event. The restriction allows

us to leverage on locally exogenous jump in supply reminiscent of regression discontinuity.

This design mitigates the concern about the endogeneity of the timing of the exit event.

Figure 3 depicts Alaska’s average prices for the 2 × 2 blocks. Each dot represents the

average price for flights departing on a given date. We average the prices across pricing dates

and flight directions. Note that Alaska raises its price significantly in the treated route but

not in the control route. We utilize the impact of this price increase on sales to estimate the

slope of the demand curve.

Further, we zoom in on time trends around the exit event. Figure 4 displays kernel

estimates of industry pricing paths. We observe that the control and treatment routes

exhibit comparable time trends before the exit. Despite the treated route being significantly

cheaper, the price differential remains steady. Similar to Figure 3, we notice a price increase

on the treated route, whereas there is no discernible price increase on the control route.

Next, we examine the dynamic pricing as the departure date approaches. Figure 5 depicts

the dynamic pricing paths for each route before and after the exit. The exit does not impact

the control route’s dynamic price path. In the treated route, prices increase for almost every

pricing date. Exit does not affect extreme fares far from the departure date and those close

to the departure date, which may be an artifact of the fixed pricing buckets (letter fares).

Price rises significantly for clients who arrive 2 to 5 weeks before departure, indicating that

firms compete most intensely for leisure customers. Our structural analysis will explain this

outcome through the interaction of revenue management and competition.
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Our research design allows us to test for substitution between adjacent departure dates

and verify our market definition. In particular, we utilize the fact that the prices increase

after the exit in the treated route. Therefore, if there is a meaningful substitution between

the adjacent dates, we should see an increase in demand for dates before the exit in the

treated market compared to the control market. To test this assertion, we compare sales

(demeaned by a route average) for flights departing N days before exit between treated and

control markets. We obtain p-values 0.21, 0.51, and 0.22 for N equal to 1, 2, and 3. We also

obtain similar p-values when comparing transaction prices. Despite a significant post-exit

price hike, we conclude that the demand for departure dates before the exit stays the same.

This result suggests negligible between-day substitution.

In the next section, we present the structural model.

4 Model

In this section, we set up a dynamic duopoly model in which two firms compete to sell

limited capacity while facing stochastic demand.

Fix a market, defined as a combination of a route and departure date. Consider two

airlines j ∈ {1, 2} endowed with an initial capacity of homogeneous seats denoted by c0j . The

seats can be sold in T selling periods representing days as the departure date approaches.

In each period, the available capacity ctj is determined by the number of seats unsold in the

previous period. The final capacity cTj occurs after the flight is closed, and it cannot be

monetized.

The remainder of this section describes the consumer demand for airline seats, single-

period profit function, value function, and equilibrium concept. We discuss the underlying

assumptions and motivating empirical evidence when developing the model.

4.1 Consumer demand

Each period t brings I t potential consumers with unit demand. Consumers may purchase

airline seats or choose the outside option. Consumers are short-lived and myopic; they leave
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the market after choosing the outside option.89

The number of potential consumers I t is distributed as Poisson with an arrival rate λt.

Since λ depends on t, the average number of arriving consumers depends on the number

of days to the departure. The airlines know the distribution and arrival rates but do not

observe the exact number of potential consumers I t. This assumption is motivated by the

nature of price setting in the airline industry. Before setting the price for a certain period,

companies will likely know the average number of customers arriving. However, it is unlikely

that they will know the actual number of consumers shopping for flights.

Each consumer who arrives t days before departure can purchase a seat if capacity is

available or choose an outside option. The outside option contains all other alternatives to

flying on a particular date. The alternatives include other means of transportation, other

travel dates, and alternative destinations. We abstract from modeling joint price setting for

multiple departure dates and routes.

Consumers have random utility for flights, which follows Berry et al. (1995), henceforth

BLP. Similarly to BLP, each consumer i observes the current prices denoted by ptj, idiosyn-

cratic utility shock vector, represented by ϵti, and aggregate utility shock, denoted by ξtj.

Consumer’s utility from choosing the flight j is given by

ut
ij = αt

ij + βt
ip

t
j + FEtreatment + FEweekend + ξtj + ϵtij = δtij + ϵtij (1)

We normalize the outsize option by setting ut
i0 = 0. Parameter αt

ij is an airline-specific

random coefficient, while βt
i is a random price coefficient. Denote the joint distribution of α

and β, as F (·; t). The dependence of F on t allows the own- and cross-elasticity to depend

on the number of days to the departure. For instance, since business customers may arrive

late, our specification allows consumers to become inelastic and brand-loyal as the departure

8There are several empirical reasons why presuming myopic customers may not be restrictive in our
application. Primarily, the equilibrium price paths are increasing; hence, consumers have no reason to wait
for prices to fall. Also, since high-valuation consumers arrive late, waiting and pooling with higher types
may not be optimal. Nonetheless, some consumers may be delaying finalizing their trip arrangements. Those
consumers may strategically wait, trading off lower uncertainty of their travel plans for higher prices. We
leave this case open for further investigation.

9Another implication of assuming that consumers are short-lived is not allowing price-matching if the
fare for the same departure date decreases in the future. Price-matching policies varied across carriers, ex.,
Alaska allowed while JetBlue did not allow it during our sample. Nevertheless, for our routes, the prices
typically increase over time. In the rare instances when the price decreases, we would not allow consumers
to use price matching.
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date approaches.

The aggregate utility shock ξtj varies across departure dates, which captures varying pref-

erences towards departure dates. The utility function also contains a fixed effect FEtreatment,

which allows for a common demand shock in the period after Delta leaves the treated route.

This parameter does not vary by route, which embodies the common trend assumption in

a difference-in-differences regression. We also explicitly allow for a common shock to the

demand for weekend flights represented by FEweekend.

Further, we make a standard assumption that ϵtij is identically and independently dis-

tributed as a Type-1 extreme value. Thus, the probability that each arriving consumer

purchases a seat from the company j is given by

stj =

∫
exp

(
δtij

)
1 +

∑
k

exp (δtik)
dF (α, β; t) .

Since customers arrive as Poisson distribution, the quantity sold qtj for every firm j, con-

ditional on ξ, follows a Poisson distribution with arrival rate λtstj. Moreover, the Poisson

distributions are independent across firms, conditional on ξ.10 These features are valuable

for reducing the computation and making the state transition numerically tractable.

The next remainder of this section describes the dynamic pricing game.

4.2 Stage payoffs

Given prices (ptj, p
t
−j) firm j obtains the following static payoff∫

qj

qj
(
ptj −mctj

)
dF (qj; p

t
j, p

t
−j, c

t, ξt),

where qj has a Poisson distribution with an arrival rate λtstj that is censored at ctj. Non-

trivial probability mass on ctj represents the event of selling out the flight. Marginal cost is

given by mctj = mcj +ωt
j, where ω

t
j is an idiosyncratic cost shock observable to the firms but

not to the econometrician.

10The proof is straightforward and can be found in the Appendix ??.
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4.3 Timing

The dynamic pricing game has the following timing:

1. Capacity vector ct, demand shocks ξt and marginal cost shocks ωt are revealed to all

firms.

2. Firms simultaneously choose prices (ptj, p
t
−j).

3. I t consumers arrive. Each consumer makes a choice determining quantity vector

(qtj, q
t
−j).

4. Firms receive stage payoffs. Next period capacity is determined according to

ct+1
j = ctj − qtj.

Next, we define a strategy space and value function.

4.4 Strategies and value function

The industry state is given by a triple (ct, ξt, ωt). We consider non-stationary Markov

pricing strategies gj. Specifically, the prices are contingent on all current period payoff-

relevant state variables. That is, the number of days to departure t, and (ct, ξt, ωt). Formally,

gj : T︸︷︷︸
time

× CJ︸︷︷︸
capacities

× ΞJ︸︷︷︸
demand shocks

× ΩJ︸︷︷︸
cost shocks

→ R+︸︷︷︸
current price

.

For each strategy profile (gj, g−j) define a non-stationary value function

V t
j (c

t, ξt, ωt; gj, g−j) = E

T∑
s=t

δs−tqsj
(
psj −mcsj

)
The expectation is according to a controlled Markov process over prices, quantities, and

marginal costs. The value prescribes the cash-flow for firm j with capacity ctj, and competi-

tors capacity ct−j. We impose a terminal condition V T
j = 0.
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4.5 Equilibrium

We consider Markov Perfect Equilibria (g∗j , g
∗
−j), such that

V t
j (c

t, ξt, ωt; g∗j , g
∗
−j) ≥ V t

j (c
t, ξt, ωt; gj, g

∗
−j), ∀gj, ct, ξt, ωt, j, t ≤ T.

To solve this game, we use a standard transformation leveraging the independence of

states ξt and ωt over time. With abuse of notation, define an ex-ante value function as

V t
j (c) = Eξ,ωV

t
j (c, ξ, ω).

We omit subscript t to simplify the notation and denote t + 1 value function by V ′. In

the MPE, ex-ante value functions must satisfy the following Bellman equation

Vj(c) = Eξ,ω max
pj

∫
q

[
qj (pj −mcj) + δV ′

j (c
′)
]
dF (q; pj, p−j, c, ξ) (2)

Some discussion of the modeling choices is warranted. The model contains random con-

sumer arrival λ, demand shocks ξ, and supply shocks ω. Since we observe the integer number

of seats sold, not market shares, the model has to generate distribution over finite quanti-

ties. Poisson distribution is the simplest way to obtain computationally tractable stochastic

integer quantities.

Demand shocks ξ capture the possibility of price endogeneity. Because the firms are

likely to have more information about the demand than the econometrician, it is likely that

the departure dates with higher demand, such as holidays, would receive higher prices. This

possibility is captured by the dependence of prices on the vector ξ, which varies across routes,

departure dates and pricing dates. Note that, without ξ, all cross-sectional price variation,

after controlling for observables would be loaded on the supply shocks because firms do not

observe the realization of the Poisson arrival process before setting prices. Thus, assuming

away ξ would rule out demand-driven price endogeneity and may lead to underestimating

price elasticities.11

11Alternatively, we could allow firms to observe the realizations of the consumer arrival process to generate
price endogeneity. We decided against it because it is unlikely that firms observe the exact number of
potential customers. Also, current airline pricing algorithms do not take into account information on web
or call center traffic. Another possibility would be to replace ξ with shock to the arrival rate λ, that are
observed to the firm but not to the econometrician. However, given available data, λ is hard to distinguish
from the level of utility; thus, shocks to the utility and shocks to the arrival rate generate numerically close
purchase patterns. As a result, we can accommodate only one of the shocks. In such case, and we decided
to follow the established literature, such as BLP, and include shocks in the utility function.
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Conversely, ω represents cost shocks that firms observe before setting prices. We include

these shocks in the model to allow for supply-driven price endogeneity. We estimate sup-

ply and demand as a system of equations, tracing the changes in the pricing equilibrium.

Incorporating ξ and ω in the model allows for simultaneous shifts in demand and supply

curves across observed pricing equilibria. Without ω the unexplained price variation would

be driven solely by the demand shocks, leading to overestimating price elasticities.

The following section contains the details of the estimation procedure.

5 Estimation

This section contains the details of the estimation and identification of the model. We

start by describing the parametric specification. In general, we allow the parameters to be

different for each route but we fix them across departure dates. The variation in demand

across departure dates is absorbed by two utility fixed effects, FEtreatment and FEweekend, as

well as by demand shocks ξtj.

5.1 Parametric specification

We use a third-order polynomial to approximate the consumer Poisson arrival rate:

λ (t; γarrival) =
3∑

n=0

γ
(n)
arrival ×

(
t

7

)n

.

We consider a finite number of latent consumer types, following Hendel and Nevo (2013)

and Berry and Jia (2010). The latent types aim at capturing changing elasticity of consumer

demand as the departure date approaches and brand preference heterogeneity. To capture

these two feature we introduce 4 latent segments. The segments follow a 2-by-2 specification,

allowing both vertical and horizontal differentiation. To capture the former, we allow for

two latent vertical types that differ by price sensitivity β. We introduce a high type that

represents business travelers with price-insensitive utility. We also introduce a low type that

represents leisure traveler with price-sensitive utility. The probability that a consumer who
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arrives at time t is low type is approximated by a third-degree polynomial

PrL(t; γvertical) =
1

1 + exp
[∑3

n=0 γ
(n)
vertical ×

(
t
7

)n] .
The probability that is a high-type consumer is

PrH (t; γvertical) = 1− PrL (t; γvertical) .

The logit transformation is chosen to bound probabilities in [0, 1].

We allow for two horizontal types with potentially different brand preferences.12 Hor-

izontal types differ by their utility intercepts α. Consider a vertical type H. The condi-

tional probability that this consumer prefers firm 1 is given by γH,1
horizontal. Conversely, the

consumer prefers firm 2 with probability γH,2
horizontal = 1 − γH,1

horizontal. Similarly, consumer

of low vertical type prefers firm 1 with probability γL,1
horizontal, and firm 2 with probability

γL,2
horizontal = 1− γL,1

horizontal.

According to the conditional probability specification, the distribution of 4 latent types

is given by the product of the time-varying probability distribution of the vertical types and

the corresponding conditional probability distribution of horizontal types. In particular, at

time t, high-type consumers leaning towards firm j arrive with probability

PrH (t; γvertical)× γH,j
horizontal.

Similarly, low-type consumers leaning towards firm j arrive with a probability

PrL (t; γvertical)× γL,j
horizontal

We estimate two price coefficients βH and βL for high and low types, respectively. We

also estimate 4 intercept vectors αH,1, αH,2, αL,1, and αL,2 that vary across both vertical and

horizontal types. Each of the intercept vectors is a 2 × 1 vector. We normalize one of the

intercepts in αL,2 to 0. This specification allows brand loyalty to differ across vertical types

and firms. The such specification aims to capture differences in the frequent flyer programs

12We cannot identify brand preferences from preferences on other persistent product attributes. We do
not distinguish these in the discussion.

19



across firms. We need to estimate 4 parameters of the vertical type arrival polynomial, 2

conditional probabilities for horizontal types, 2 price coefficients, and 7 intercepts.

We observe discrete realizations of quantities, not market shares; thus, BLP market share

inversion is not applicable. Instead, we postulate parametric distributions of demand shocks

ξ and supply shocks ω. In particular, we assume shocks are distributed as normal random

variables with mean 0 and variances σ2
ξ and σ2

ω. The such specification allows us to integrate

over ξ instead of inverting the demand equations.

As explained in the following subsection, we estimate supply and demand jointly to be

able to identify a flexible time-varying distribution of customer heterogeneity PrL(t; γvertical).

This object is crucial for our conclusions regarding price discrimination and revenue manage-

ment. We considered modeling shocks non-parametrically and adapting an inversion method

that allows for a measurement error in market shares. In our case, such an approach is only

practically possible if demand is not estimated jointly with the dynamic game. Consequently,

to sustain flexible time-varying distribution of customer heterogeneity, we decided to focus

on estimating the dynamic game and assume parametric distribution of the shocks.

5.2 Generalized method of moments

Demand and supply are estimated jointly using a Nested-fixed-point Simulated General-

ized Method of Moments (GMM). There are 3 error terms in our model: consumer arrival,

demand shocks and supply shocks. All these error terms are “structural,” that is they

have an economic interpretation. In particular, we do not rely on “measurement error,” or

“trembling hand” error terms.

Our data is a triple panel consisting of routes, departure dates, and pricing dates (number

of dates to the departure). Let r denote a combination of route and departure date. As

in the previous section, we denote pricing date as t. Following Rust (1987), the estimation

routine consists of two loops. In the inner loop, we solve an MPE of the dynamic game fixing

demand and supply parameters, θ. Using the equilibrium strategies, we simulate industry

paths

cr,t(θ), pr,t(θ), qr,t(θ), ∀r, t ≤ T

Let zr,t be the set of instruments. We consider the following 5 groups of moments (all

variables have r, t superscripts, which we omit to simplify the notation)
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1. Price and sales (4 moments per instrument):

E [pjz] and E [qjz] , ∀j ∈ 1, 2

2. Price and sales for weekend departure dates (4 moments per instrument):

E [pjIweekendz] and E [qjIweekendz] , ∀j ∈ 1, 2

3. Price times sales (4 moments per instrument):

E [pjqjz] and E [pjq−jz] , ∀j ∈ 1, 2

4. Price times capacity (4 moments per instrument):

E [pjcjz] and E [pjc−jz] , ∀j ∈ 1, 2

5. Sales times capacity (4 moments per instrument):

E [qjcjz] and E [qjc−jz] , ∀j ∈ 1, 2

Summing the above, we consider 20 groups of moments. The instruments follow a diff-in-diffs

specification and consist of 4 dummy variables indicating

1. Route with exit (treated), departure date before exit

2. Route with exit (treated), departure date after exit

3. Route without exit (not treated), departure date before exit

4. Route without exit (not treated), departure date after exit

We interact the above dummies with 7 dummies indicating the number of weeks to the

departure. As a result, we consider 28 instruments that indicate a combination treatment,

departure date, and the number of weeks to the departure. All in all, we obtain 20×28 = 560
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moments to estimate 45 parameters . Moments with zero empirical variance are removed

resulting in 469 moments.13

Denote the vector of empirical moments as ϕ, and a vector of simulated moments as ϕ(θ).

Consider a weighting matrix W . The outer loop minimizes the following objective function

f(θ) =
[
ϕ̂(θ)− ϕ

]′
W

[
ϕ̂(θ)− ϕ

]
.

We conduct two-step GMM. In the first step, we estimate a model with an identity weighting

matrix. Using these estimates we compute a consistent estimator of an optimal weighting

matrix denoted by Ŵ . In the second step, we re-estimate the model using Ŵ . Standard

errors are obtained using a sandwich formula for an optimal weighting matrix.

5.3 Numerical considerations

The computational burden of the estimation depends on the computation speed of the

MPE for a given θ. For each θ the equilibrium needs to be computed for every route,

separately for weekend/weekday departure dates, and for the departure dates that were

treated. Because of this it is essential to employ a set of numerical techniques that accelerate

the MPE computation.

To solve the Bellman equation (2) we employ a finite horizon version of Pakes et al.

(1994) algorithm. In particular, we solve the game by backward induction. We start by

setting V T = 0. Then we solve a 1-period pricing game by computing V T−1 using the

Bellman equation. We continue until we reach t = 0.

There are 3 main difficulties that complicate solving the Bellman equation. The equation

contains a series of nested routines. We discuss these routines starting from the most inner

computational layer. First, for every c and pair ξ, ω, we need to solve a pricing game. We

solve the pricing games using best response dynamics.

The second computational layer is the integration with respect to shocks ξ, ω. The

distribution of the shocks is a bi-variate normal. To perform the integration we use Gauss-

Hermite quadrature with 34 grid points. As a result, to obtain an ex-ante value function for

a fixed c, we need to solve 81 pricing games.

13Note that for the route with exit and departure date after exit, the number of baseline moments is only
7 instead of 20. This condition generates 1 × 7 × 7 = 49 moments whereas other 3 conditions generate
3× 20× 7 = 420 moments.
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We have to perform backward induction by iterating on the Bellman equation. This step

is relatively difficult because it has to be performed for each c and inner maximization and

integration layers and computationally taxing. To lower the computational burden, instead

of performing an exact value iteration, we perform parametric value iteration as in Judd

(1998). In particular, we choose a 14 × 14 grid (subset) of feasible capacities and solve the

equation (2) only on this grid, instead of for every c < c0. This step is parallelized using

a multi-processor server. We obtain V outside of the grid as necessary using cubic spline

interpolation.

5.4 Identification

As mentioned earlier, the demand and supply is estimated jointly as a system of equations.

In such case, the identification of demand elasticity requires exclusion restriction; that is,

covariates that enter supply equations but are excluded from the demand equation. In

our case, the number of players enters the supply equilibrium conditions, but is assumed

to be uncorrelated with idiosyncratic demand shocks ξ before and after the exit event on

March 31st. Consequently, the price variation induced by the altered supply-side equations

would be uncorrelated with ξ and would identify the price coefficients. Matching price

and sales moments interacted with treatment and control would result in an estimate of

the elasticity. The intuition follows Figure 3, and matching corresponding difference-in-

differences in quantity sold for the treated and control routes.

Following the BLP, the marginal cost is identified using the supply-side optimality con-

ditions induced by the supply-side equation. That is, the estimation would yield estimates

of marginal costs that rationalize prices observed in the data. In our case, the supply side

equations cannot be easily inverted. Instead, we match unconditional price and quantity

moments.

As mentioned earlier the identification of the consumer arrival rate from the demand

intercept requires a normalization and we normalize one of the α’s to 0. The composition of

consumer types as the departure date approaches is identified from heterogeneous impact of

the exit event on the price and quantity paths. Previously discussed Figure 5 demonstrated

heterogeneous impact of the exit event for early and later arriving customers. The price

gap between treated and untreated market is a result of a complicated interplay of revenue

management and price discrimination. We rely on our structural model to identify which
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pattern of consumer types replicates the curvature of the pricing gap between treated and

control markets. Additionally, we rely on the panel structure of our data. Namely, the

estimation assumes that ξ is IID across departure dates for a given group. This allows us

to use remaining capacity as a price shifter by imposing and pjcj and qjcj moments. This

variation aids identification of changing customer composition on the route level.14

6 Results

In this section, we discuss the estimation results from the structural model. Table 3

reports the estimates from the structural model. In particular, Panel A of Table 3 shows the

parameters of consumers’ preference (α’s) in the exit and control routes. Panel B summarizes

the parameters of consumers’ arrival rates (γarrival) and the parameters of the distributions

of consumer types (γhorizontal) for the two routes. Panel C shows the estimates of demand

shifters that vary by departure date, including “treatment” fixed effect (applicable to all

dates following the exit in both markets), weekend fixed effect and variance of the demand

shocks ξ. Panel D contains the estimates of the marginal cost.

The estimates are precise and significant at the 1% level, suggesting that the data para-

metrically identify the model. The estimates are intuitive overall. For instance, the price

coefficient of consumers who arrive early is approximately three times that of those who

arrive late. This discrepancy suggests that buyers who arrive later are “high-types” who are

less price elastic.

Arrival rate parameters, γ
(n)
arrival, and joint distribution of types prescribed by γ

(n)
vertical

and γhorizontal determine the type-specific Poisson arrival rates, which are easier to interpret

than raw parameters. Figure 6 visualizes the Poisson arrival rates implied by the estimated

parameters and disaggregated by the consumer type. Notably, the absolute value of the

arrival rate on the Y-axis is the consequence of a specific normalization of the low-type

intercept in the utility function; hence, it should not be interpreted in isolation. Nevertheless,

the relative arrival rates are identified.

The upper portion of Figure 6 depicts arrival rates for the exit route, whereas the lower

14Because we interact pjcj and qjcj with the two diff-in-diffs dummies, identification of a model with
serially correlated ξ’s is theoretically possible. Nevertheless, because estimation of the model with persistent
unobserved heterogeneity is numerically challenging, we leave it for further research. We speculate that
persistent unobserved heterogeneity may be important in other markets with higher proportion of forward-
looking consumers.
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portion depicts the rate for the control route. The consumer arrival pattern is comparable

for both routes, which is to be expected given that both routes have the same time trend

prior to exit. In both routes, the share of the high-type travelers increases as the departure

date approaches. In the exit route, the proportion of high-type travelers is 7% seven weeks

before departure and gradually rises to nearly 80% one week before departure. On the final

day of ticket sales, around 87% of arriving passengers are high-type passengers.

Alaska has a relatively larger high-type segment in the exit route than in the control

route. The difference is perhaps due to Alaska’s longer presence in the exit route than the

control route. Longer presence facilitates building brand equity, which may result in higher

brand loyalty for Alaska in the exit route.

Figure 6 also summarizes the relative arrival rates of consumers leaning towards a par-

ticular firm. In both routes, Alaska has more loyal consumers than JetBlue and Delta.

Specifically, in the treated route, 88% of high-type and 84% of low-type consumers prefer

Alaska to Delta. In the control market, 74% of high-type consumers and 62% of low-type

consumers prefer Alaska to JetBlue.

Figure 7 shows own price elasticity and industry elasticity for the treated route. To

highlight the variation in customer preferences across firms and over time, we evaluated

all elasticities at the constant average industry price. Consistently with the estimates of

arrival rates, consumers become less price elastic as the departure date approaches. The

estimated values are in line with prior research. Gillen et al. (2003) suggests that airline

travel demands elasticity ranging from 0.181 – 2.01 with a median of 1.3 for a sample of

85 city pairs. Previous literature also points out that demand for long-haul routes is less

elastic. The median own demand elasticity of a long-haul domestic leisure consumer is 1.228.

Similarly, our estimates range from 0.4 – 2.2.

We also find that early on, Alaska consumers are more price inelastic than JetBlue

consumers, but as the departure date approaches, the elasticities of Alaska and JetBlue

converge. The minimal gap in elasticities in the late market suggests that even under the

presence of disruptive low-cost carriers, such as JetBlue, the airlines retain market power as

the departure date approaches.

Per-consumer “peanut costs” range between $24 and $32. These numbers include the

monetary costs of serving an extra passenger and an opportunity cost of selling the seat as

part of a multi-leg reservation (recall that our model only considers direct routes). Notably,
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the level of the marginal costs is consistent with the estimates provided by Link et al. (2009).

Next, we explore the model fit and focus our discussion on predicting the pricing variation

before and after the exit, and the curvature of the price and quantity paths as the departure

date approaches. Figure 8 shows trajectories in the treated market before and following

the intervention. The model replicates the level of prices before and after the exit and the

curvature of the price path. Specifically, we successfully anticipate that competitive price

trajectories will be concave, whereas monopoly price paths will be almost linear. Similarly,

Figure 9 compares the observed and model-predicted curvature of sales and prices for all

observations as a function of the number of days till departure. As the departure date nears,

we anticipate that sales will fall until week -2. We also precisely predicted a substantial

increase in ticket sales in the last week.

7 Counterfactuals

In this section, we conduct counterfactual exercises utilizing the model estimates. The

objective is to isolate the influence of dynamic pricing on welfare and firm profitability.

Moreover, we aim to differentiate the effects of price discrimination and revenue management

and emphasize their relationship with market competition. We concentrate on the duopoly

market of San Diego-Boston. To minimize computation, we set the demand errors ξ and

supply errors ω to zero.

We begin by generating a counterfactual in which dynamic pricing is ruled out. For this

purpose, we compute a Bertrand-Nash equilibrium in which companies commit to a uniform

price as the departure date approaches (henceforth, UPNE). In other words, we compute a

price pair pUPNE = (pUPNE
1 , pUPNE

2 ), such that

pUPNE
j ∈ argmaxpjE

T−1∑
t=0

δtqtj
(
pUPNE
j −mctj

)
.

Note that firms choose prices to optimize the value function at t = 0 and that the entire

quantity distribution over time is defined by the uniform pricing pair pUPNE.

Denote the UPNE value function as V UPNE
j (c). The ranking of V DP

j (c) and V UPNE
j (c) is

an empirical question, as any of the businesses may theoretically be worse off in equilibrium if

they are permitted to use dynamic pricing. Uniform pricing is a specific example of dynamic
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pricing, hence in a monopoly market, V DP
j (c) is always bigger than V UPNE

j (c). Notably,

the ranking of consumer surplus between uniform pricing and dynamic pricing is ambiguous

regardless of the market structure.

UPNE has two implications. First, the firms cannot price discriminate between early-

arriving elastic and late-arriving inelastic consumers. Therefore, when we permit dynamic

pricing, which enables 3rd-degree price discrimination, the inelastic segment pays higher

prices than UPNE, while the elastic segment pays lower prices. Figure 10 compares the

pricing routes under uniform pricing (UPNE) and dynamic pricing (DPMPE), both of which

were produced from the model. We observe that the uniform price is substantially higher

for early-arriving customers and lower for late-arriving customers. 15

Because it restricts revenue management, UPNE may lead to sub-optimal capacity allo-

cation. Figure 11 compares the odds of monopolization in which at least one company sells

out. Under UPNE, flights sell out earlier than under DPMPE. In our context, selling out

early is inefficient because customers who arrive later have a higher willingness to pay.

The difference between rows (1) and (3) of Table 4 demonstrates the effect of dynamic

pricing on the industry’s fundamentals. We find that under DPMPE, consumer welfare

increases by 3%, industry profits increase by 8%, and total welfare increases by 6%, from

$69,783 to $73,641. Permitting firms to implement dynamic pricing is a Pareto improvement

since it increases customer welfare and profits. Nevertheless, firms benefit relatively more

than consumers. Furthermore, we discover that dynamic pricing boosts industry output

and decreases average prices. Notably, Alaska (a higher-priced airline) increases quantity

while cutting prices, but JetBlue (a lower-price airline) raises both quantity and rates. This

disparity suggests JetBlue relies more on revenue management while Alaska relies more on

price discrimination. Alaska profits more from DPMPE than JetBlue, indicating that price

discrimination may be more profitable in the equilibrium than revenue management. Later

in this section, we examine this hypothesis by formally decomposing dynamic pricing into

price discrimination and revenue management.

Columns (1) and (3) of Table 5 contain the impact of dynamic pricing on specific customer

segments. We observe less than a 2% consumer welfare drop for inelastic consumers and more

than a 100% increase in the welfare of the elastic segment. Thus, dynamic pricing leads to

15Due to market share weighting, the UPNE pricing path increases as the departure date approaches.
Alaska charges higher prices, and its market share increases.
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the reallocation of surplus from late-arriving to early-arriving customers.

Under DPMPE, The overall industry output increases by more than 15%. The concurrent

increase in output and consumer welfare is reminiscent of Holmes (1989), who shows that

increasing industry output in a sufficient condition for welfare increase under competition

with 3rd-degree price discrimination. In our case, the change in output is a composition of

price discrimination and better capacity utilization due to revenue management.

The rise in consumer surplus under DPMPE highlights the relationship between compe-

tition and dynamic pricing. According to Williams (2022), in monopoly markets, dynamic

pricing produces less consumer surplus than uniform pricing. We discover the opposite.

Further, to maintain internal validity and provide apples-to-apples comparison with monop-

olized market, we consider an acquisition of Alaska by JetBlue. Specifically, we recompute

the equilibria for the monopoly firm with a joint capacity of both airlines and assign JetBlue’s

preferences to all customers.16 Columns (1) and (3) in Table 6 contain the comparison of

uniform pricing and Dynamic pricing by a monopolist. We replicate the results of Williams

(2022) by showing that dynamic pricing in a monopoly airline market leads to greater profits

but lower consumer surplus. We also discover that dynamic pricing by a single firm lowers

total surplus.

The next step is decomposing dynamic pricing into price discrimination and revenue

management. In particular, we segment the demand based on arrival time to obtain the

intermediate case of 3rd-degree price discrimination without revenue management. We allow

the firms to set different prices depending on the number of days to the departure, but not

based on capacity. We compute a Nash equilibrium in which firms choose a fixed price path

pPDNE
j = {pPDNE,0

j , . . . , pPDNE,T−1
j } to maximize their value function at t = 0. When doing

so, they keep the competitor’s price path pPDNE
−j fixed. Formally,

pPDNE
j ∈ argmax{p0j ,...,p

T−1
j }EpPDNE

T−1∑
t=0

δtqtj

(
pPDNE,t
j −mctj

)
.

Compared to the DPMPE, we do not allow the prices to respond to the currently available

capacities, ct. Denote the intermediate equilibrium payoff by V PDNE
j (c). Similarly to the

16We also considered an acquisition of JetBlue by Alaska and obtained similar results. Nevertheless, the
Alaska monopoly case is somewhat less interesting from the pricing perspective because the capacity is
not binding in all pricing counterfactuals. Lack of meaningful capacity constraint occurs because Alaska
monopolist sells predominantly to high types.
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case of uniform and dynamic pricing, there is no ranking of V PDNE(c), V UPNE(c), and

V DPMPE(c) for the oligopolistic competition. For the monopoly, V PDNE(c) is ranked in

between of V UPNE(c) and V DPMPE(c). In other words, the monopolist can never do worse

by price discriminating and can never do worse by adding revenue management on top of

price discrimination.

Columns (1) and (2) in Table 4 contrast uniform pricing with price discrimination. Un-

der price discrimination, consumers pay, on average, higher prices, and the total quantity

supplied drops. Due to the capacity constraint, the theoretical results of (Holmes, 1989)

cannot be directly applied to airlines; nonetheless, we find that reduced industry output

under price discrimination co-occurs with a decline in consumer welfare. We also observe

deadweight loss manifesting as a 6% decrease in total welfare. Table 5 displays the im-

pact of price discrimination on welfare for each consumer segment. Comparing Columns (1)

and (2) demonstrates the redistribution of welfare from late-arriving business consumers to

early-arrival leisure travelers. Figure 12 compares the price trajectories under uniform pric-

ing (UPNE) and price discrimination (PDNE) and confirms that prices in the early market

decrease while prices in the late market sharply increase.

The impact of price discrimination is qualitatively similar to the monopoly case. For

example, Williams (2022) documents a drop in consumer surplus and an increase in profits

after introducing price discrimination. Similarly, in Table 6, we observe a more significant

drop in consumer surplus and more considerable incremental deadweight loss stemming from

price discrimination in the monopoly compared to the oligopoly market. Even if competition

mitigates the negative effects of price discrimination, it is insufficient to prevent deadweight

loss.

The deadweight loss under PDNE is related to the interplay of capacity constraint and

the degree of competition in the early and late markets. Under PDNE must commit to

prices regardless of the realization of stochastic demand. Because of commitment, firms are

incentivized to hedge and set higher prices early to save seats for late-arriving high-value

customers.17 Such hedging generates upward pricing pressure, which, compared to price

17For computational reasons, our model does not allow the firms to limit the number of seats on the market,
a practice known as seat release policy (see Aryal et al. (2022)). We show that firms set higher prices early
to save capacity for later periods. A seat release policy may be an alternative. Thus, assuming a seat release
policy away may mute some of our results regarding price discrimination. Since price discrimination benefits
the firms and hurts consumers, we speculate that dynamic pricing may lead to lower firms profits and greater
consumer surplus.
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discrimination without capacity constraint, should reduce competition in an early market.

However, despite the incentives to hedge, early consumers pay lower prices in PDNE com-

pared to UPNE. According to Figure 11, lower prices in the early market result in a higher

probability of a monopoly in the later market under PDNE than under UPNE.18 In other

words, price discrimination softens competition for late-arriving customers via capacity pre-

commitment. As a result, as shown in Table 5, late-arriving consumers’ welfare decreases by

more than 10%, which is the primary driver of deadweight loss under PDNE.

Next, we describe the impact of introducing revenue management on top of price dis-

crimination. For this purpose, we compare PDNE with DPMPE. Figure 10 demonstrates

that PDNE and DPMPE deliver differential pricing in the early and late markets; however,

DPMPE leads to a nearly uniform price decrease. Moreover, according to Figure 13, DPMPE

results in uniformly larger industry sales. Revenue Management decreases early market hedg-

ing since the firms can secure the capacity for high-value customers by increasing the price

only when the demand is high. As a result, revenue management creates downward pricing

pressure in the early market. Moreover, since the capacity utilization under DPMPE is more

efficient, more residual capacity exists in the late market, creating further downward pricing

pressure. Indeed, Figure 11 shows that revenue management is highly effective at preventing

monopolization of the late market, beating not only PDNE but also UPNE.

Comparing Columns (2) and (3) in Table 4 confirms that revenue management leads to

simultaneous increase in sales and decrease prices. Notably, after allowing revenue man-

agement, the industry profits decrease. Lower prices and industry profits contrast with the

monopoly case. For example, Williams (2022) does not find a meaningful impact of revenue

management on average price and documents an increase in the industry profits. Similarly,

when comparing Columns (2) and (3) in Table 6, we find the negligible impact of Rev-

enue Management on the monopoly market. The difference between monopoly and duopoly

markets suggests that downward pricing pressure under revenue management interacts with

market structure leading to fiercer competition. Comparing columns (2) and (3) of Table

5, we find that both elastic and inelastic customers benefit from revenue management. In

other words, loosening the capacity constraint under revenue management leads the firms

to compete away a portion of the rents from price discrimination and reduce deadweight

18Notably, PDNE delivers a lower probability of monopolization in the last week when monetizing the
inelastic demand.
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loss. Interestingly, because of the reduced waste from unsold seats, firms can obtain profits

comparable to those under price discrimination and simultaneously deliver a larger surplus

to their customers.

Revenue management, and by extension dynamic pricing, necessitates a certain level

of competition to significantly augment market efficiency. This notion is corroborated by

Lazarev (2019), who asserts that commitment can engender market power in competitive

airline markets. Because revenue management curtails some commitment power, economic

rents are redirected toward consumers. Consequently, dynamic pricing, conceived as a hybrid

of price discrimination and revenue management, can mutually benefit consumers and firms

in a competitive landscape.

7.1 Robustness

In this segment of our discussion, we aim to delineate the boundaries of our findings.

Given our data is derived from two airline markets, a pertinent line of inquiry would be to

consider the transferability of our results to other duopoly markets. We identify two salient

market-level parameters that could dictate the interrelationship between competition and

dynamic pricing. Notably, the issue of capacity constraint is at the core of our deliberations,

and relaxing these constraints may attenuate some of our conclusions. This assertion is

predicated on the idea that the enhancement in consumer surplus brought about by revenue

management could be diminished in scenarios where capacity is less restrictive.

In our first line of analysis, we reduced capacity by 25%, and this maneuver resulted

in a 6% increase in total welfare, a 1 percentage point improvement over the 5% increase

observed with the original capacity. Conversely, a 25% increase in capacity led to a 3.9%

rise in total welfare. From these observations, it is clear that the stringency of the capacity

constraint positively influences the relative impact of dynamic pricing on market efficiency.

The second determinant we consider is the degree of horizontal differentiation, which is

likely to vary across airline markets. The rationale behind examining horizontal differenti-

ation is that monopoly markets, known for their adverse impact of dynamic pricing, might

mirror duopoly markets characterized by a high degree of horizontal differentiation. There-

fore, it might be instructive to augment horizontal differentiation and reevaluate the merits

of dynamic pricing.

To operationalize the expansion of horizontal differentiation, we enhance the standard
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deviation of ϵ within the utility function, as denoted in equation (4.1). It warrants mentioning

that this increase impacts the share of the outside option. Hence, we contemplate two

scenarios: a ’vanilla’ case where we merely increase the standard deviation and an ’adjusted’

case where we modify the intercept to maintain the same inside shares (evaluated at average

prices and capacity). The results of these manipulations are depicted in Table 7.

Remarkably, more extensive horizontal differentiation accentuates our results (irrespec-

tive of the intercept adjustment). Elevating the dispersion of heterogeneity shock ϵ by 20%

results in an extra percentage point of efficiency gain delivered by dynamic pricing. The

robustness of our main result implies that the strategic interactions between competitors

and the commitment effects discussed previously hold greater significance than the degree

of differentiation.

Notably, the effects on Total Surplus remain consistent for all examined levels of hetero-

geneity. However, a more pronounced heterogeneity facilitates a larger consumer allocation

of surplus. For example, the 20% adjustment benefits consumers by nearly 2 percentage

points (3.28% vs. 4.91%) but dampens the impact on profits by half a percentage point

(8.48% vs 8.05%). This differential effect can be linked to the detrimental implications of

reduced late-market capacity in scenarios with high horizontal differentiation. To exemplify,

if one airline exhausts its supply, resulting in a monopoly, the group of consumers with a

strong preference for that airline is substantially disadvantaged if horizontal differentiation

is extensive. As we demonstrated earlier, revenue management expands available capacity

and minimizes the probability of such monopolization, thus preventing surplus loss.

8 Conclusion

Sophisticated pricing strategies are becoming more accessible to businesses as a result of

advances in information technology, enabling for prices to be adjusted in near real-time. As

a result, price competition becomes increasingly dynamic. This study conducts an event

study examining the consequence of dynamic pricing in an oligopolistic airline market. It

delivers two main findings. First, inter-temporal price discrimination softens competition in

the late market. It shifts rents from business to leisure travelers and allows airlines to extract

more consumer surplus via capacity pre-commitment, reminiscent of Kreps and Scheinkman

(1983). Second, the ability to smooth demand fluctuations (revenue management) boosts
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the efficiency of capacity utilization and undermines capacity pre-commitment. Removal of

commitment leads to transferring some benefits from sophisticated pricing from airlines to

consumers. Overall dynamic pricing is a Pareto improvement under a sufficient degree of

competition.

The work on perishable good dynamic oligopoly is relatively scant compared to the

durable good literature.19 The empirical work in this area faces the scarcity of disaggregated

data, identification challenges caused by price endogeneity, and the complexity of solving

dynamic oligopoly models. Under these hurdles, this work prioritizes internal over external

validity by considering a slice of the airline industry, where robust identification of consumer

preferences and their heterogeneity is feasible. Nevertheless, we display the external validity

of our findings by simulating airline markets with various levels of capacity constraint and

horizontal differentiation. As high-frequency data becomes increasingly accessible, applying

our methodologies to a broader array of markets presents an exciting avenue for future

research.

Finally, we recognize a growing theoretical literature on selling perishable goods to

forward-looking consumers. Though this aspect may not be central to our specific con-

text, it might play a crucial role in other airline market scenarios. For example, on tourist

routes where regular promotions and last-minute discounts are common, consumers might

adopt a more strategic approach. Incorporating the element of forward-looking consumers

into our analysis is a potential avenue for furthering this line of research.
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Figure 1: Example price path. This graph shows the average price path for JetBlue Flight
19 from March 01, 2016, to June 01, 2016. The red line shows the average price conditional
on the number of days to departure. The light-blue area shows one standard deviation of
prices.

03/17 — 03/31 04/01 — 04/15

Exit route
Seattle-Tucson

Delta
Alaska

Alaska
N=2940 N=1470

Control route
Boston-San Diego

Alaska Alaska
JetBlue JetBlue
N=2940 N=2940

Note: the number of observations in each cell is calculated by N= #firms×#pricing-
dates×#departure-dates.

Table 1: Research design. The table describes the difference in differences research design.
The Seattle-Tuscon route experienced the exit of Delta on 03/31/2016.

36



Statistic Mean Median St. Dev.

Observations (N=10,290)

Price ($) 310.51 268.00 154.63
Number of seats sold daily 1.11 0 1.87
Price change across days ($) +7.49 0 62.03

Products (N=210)

Capacity 64.27 64.00 23.28
Average total sales 47.39 46.00 21.12
Load factor 0.85 0.87 0.08
Gini coefficient 0.21 0.22 0.08

Table 2: Data summary. The upper part of the table contains descriptive statistics across
the pricing events (routes, departure dates, and days to the departure). The lower part of
the table contains statistics across routes and departure dates.
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Figure 2: Price and remaining capacity. This graph shows the history of prices and remaining
seats for a particular flight (JetBlue Flight 19), which departed on March 25, 2016. The
red line with squares shows the path of the remaining seats. The blue line with triangles
shows the path of prices. The shaded regions highlight some suggestive evidence of revenue
management. In the light-blue area, seats were sold out quickly (the red line with squares
dropped quickly), then the price (the blue line with triangles) increased. In the light-orange
area, seats sold out slowly (the red line with squares was flat), then the price (the blue line
with triangles) dropped.
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Figure 3: Alaska’s price response to Delta’s exit. This graph shows Alaska’s average prices
under the 2-by-2 treatment conditions (Table 1). Each dot is an average price for flights
departing on a given departure date in a given route. It is averaged over N = #directions×
#pricing-dates observations of prices. The light blue areas are 95% confidence intervals.
Alaska raises its price significantly only in the route where its competitor exits.
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Figure 4: Parallel trend before the exit event. This graph shows price trends for the two
routes before the exit. Each dot is an average price for flights departing on a given departure
date in a given route. It is averaged over N = #firms × #directions × #pricing-dates
observations of prices. Each line is smoothed using Gaussian kernels. Before March 31,
2016, the price gap was stable across the two routes. The gap changed after Delta’s exit on
April 1, 2016.
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Figure 5: Heterogeneous effects on Alaska’s average price path. The graph shows Alaska’s
average price path under the 2-by-2 treatment conditions. Each dot is an average price
for flights departing under a given condition for a given number of days to departure. It
is averaged over N = #directions × #departure-dates observations of prices. It illustrates
heterogeneous effects across different numbers of days to departure.
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Panel A
Exit route Control route

High type Low type High type Low type

A-1: Price coefficients βH and βL -0.556
(0.007)

-1.528
(0.019)

-0.383
(0.001)

-1.535
(0.009)

A-2a: Firm-1-leaning consumers preference αH,1 and αL,1

Firm 1
2.255
(0.042)

1.326
(0.072)

0.990
(0.010)

0.734
(0.017)

Firm 2
-0.288
(0.085)

-0.202
(0.042)

0.347
(0.009)

0.654
(0.009)

A-2b: Firm-2-leaning consumers preference αH,2 and αL,2

Firm 1
-0.192
(0.065)

0.616
(0.026)

Firm 2
4.077
(0.049)

2.497
(0.060)

3.213
(0.020)

3.170
(0.027)

A-3: Probability of leaning towards firm 1 γH,1
horizontal and γL,1

horizontal

0.889
(0.005)

0.830
(0.014)

0.740
(0.004)

0.623
(0.008)

Panel B
Exit route Control route

γ
(n)
arrival γ

(n)
vertical γ

(n)
arrival γ

(n)
vertical

n=0
6.775
(0.130)

-2.665
(0.021)

3.803
(0.013)

-1.245
(0.009)

n=1
0.520
(0.017)

0.472
(0.004)

1.283
(0.009)

0.369
(0.004)

n=2
-0.394
(0.004)

-0.147
(0.002)

-0.571
(0.004)

-0.155
(0.002)

n=3
0.052
(7e-4)

0.024
(4e-4)

0.063
(6e-4)

0.024
(2e-4)

Panel C
FEtreatment FEweekend σξ

Other demand parameters
0.059
(0.006)

-0.074
(0.006)

0.410
(0.010)

Panel D
Alaska Delta JetBlue σω

Cost parameters
32.100
(0.075)

24.130
(0.150)

30.937
(3.960)

11.514
(0.039)

Table 3: Estimates of the structural model. The table presents the estimates of the structural
parameters. Panel A contains the estimates of consumer preferences. Panel B contains the
coefficients of the polynomials gathering the Poisson arrival of consumers and the proportion
of low-type customers as the arrival date approaches. Panel C contains the estimates of the
fixed effects applied to departure dates after the exit event on 03/31/2016 and the weekends.
It also contains the estimate of the variance of unobserved demand shifter ξ – distributed
normally with mean zero. Finally, panel D contains the estimates of marginal costs.
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Figure 6: Estimated arrival by consumer segments. The graph plots Poisson arrival rates
for different segments of consumers in the two routes. The upper graph shows the arrival
distribution in the exit route. The lower graph shows the arrival distribution in the control
route.
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Figure 7: Demand elasticities. This graph shows own price elasticity and industry elasticity
(in absolute values) evaluated at the average price. Own demand elasticity is the percentage
change of own sales after a one percent increase in own price. Industry demand elasticity is
the percentage change in industry sales when both firms increase their prices by one percent.
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Figure 8: Model fit in the treated route. This graph compares the model-predicted prices
with the actual prices conditional on the number of days to departure. The dashed lines are
model-predicted prices, and the solid lines are the observed prices. The red curve is Alaska,
and the blue curve is Delta.
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Figure 9: Model fit for price and sales. This graph shows the fit of price and sales averaged
across routes, companies, and departure dates.
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Figure 10: Impact of dynamic pricing on price paths. The graph depicts uniform pricing
Nash-equilibrium (UPNE) and dynamic pricing (DPMPE) pricing paths. The prices are
averaged across departure dates in the San Francisco-Boston route, assuming a duopoly
market structure.
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Figure 11: Likelihood of monopolization. The graph contains a cumulative likelihood of
monopolization as the departure date approaches. Monopolization is defined as “at least one
company selling out all capacity.” We compare monopolization for uniform pricing Nash-
equilibrium (UPNE), price discrimination Nash-equilibrium (PDNE), and dynamic pricing
Markov-perfect equilibrium (DPMPE). The prices are averaged across departure dates in
the San Francisco-Boston route, assuming a duopoly market structure.

44



(1) (2) (3)
Uniform pricing Price discrimination Dynamic pricing

Alaska Profits $11,503 $13,071 $13,031
Sales 27.5 30.3 40.6
Average price $450.4 $463.5 $352.8

JetBlue Profits $18,695 $19,850 $19,726
Sales 64.6 60.3 67.0
Average price $319.7 $360.4 $325.5

Industry Profits $30,198 $32,921 $32,758
Sales 92.1 90.6 107.6
Average price $358.7 $394.9 $335.8

Consumer surplus $39,585 $35,726 $40,883

Total welfare $69,783 $68,648 $73,641

Table 4: Impact of dynamic pricing. The table describes the effect of three pricing regimes on
profits and welfare. The numbers are obtained in the San Francisco-Boston route, assuming
a duopoly market structure.

(1) (2) (3)
Uniform pricing Price discrimination Dynamic pricing

High-type Alaska-leaning $21,548 $19,465 $22,066
JetBlue-leaning $16,213 $14,124 $15,076
Both $37,761 $33,590 37,143

Low-type Alaska-leaning $159 $205 $787
JetBlue-leaning $1,665 $1,931 $2,954
Both $1,823 $2,136 $3,741

Consumer surplus $39,585 $35,726 $40,883

Table 5: Impact of dynamic pricing on vertical consumer segments. The table disaggregates
the impact of pricing on consumer welfare by consumer segment. High types are inelastic
late-arriving business travelers. Low types are elastic early-arriving leisure travelers. The
numbers are averaged across departure dates for the treated route, assuming a duopoly
market structure.
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(1) (2) (3)
Uniform pricing Price discrimination Dynamic pricing

JetBlue Profits $23,688 $25,576 $25,667
Sales 82.5 76.9 79.3
Average price $318.0 $363.5 $354.6

Consumer surplus High-type $30,208 $24,301 $24,872
Low-type $1,873 $2,432 $2,620
Total $32,081 $26,733 $27,492

Total welfare $55,769 $52,309 $53,159

Table 6: Impact of dynamic pricing in the monopoly case. The table describes the effect of
three pricing regimes on profits and welfare. The numbers are obtained in the San Francisco-
Boston route, assuming a monopoly market structure. We obtain the monopoly market
structure by conducting an acquisition of Alaska by JetBlue. In particular, we assume that
the monopolist has a joint capacity of Alaska and JetBlue and that consumers have JetBlue
parameters of preferences.
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Figure 12: Comparison of price paths under various pricing regimes. We compare price
paths as the departure date approaches for uniform pricing Nash-equilibrium (UPNE), price
discrimination Nash-equilibrium (PDNE) and dynamic pricing Markov-perfect equilibrium
(DPMPE). The prices are averaged across departure dates in the San Francisco-Boston route,
assuming a duopoly market structure.
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Figure 13: Comparison of seat sales under various pricing regimes. We compare daily seat
sales as the departure date approaches for uniform pricing Nash-equilibrium (UPNE), price
discrimination Nash-equilibrium (PDNE) and dynamic pricing Markov-perfect equilibrium
(DPMPE). The sales are averaged across departure dates in the San Francisco-Boston route,
assuming a duopoly market structure.
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(1) (2) (3)
Horizontal
differentiation

Uniform pricing Price discrimination Dynamic pricing

Baseline
Consumer Surplus $39,585 $35,726 (-9.75%) $40,883 (+3.28%)
Producer Surplus $30,198 $32,921 (+9.02%) $32,758 (+8.48%)
Total Surplus $69,783 $68,647 (-1.63%) $73,641 (+5.53%)

+5%
Consumer Surplus $40,403 $36,690 (-9.19%) $42,075 (+4.14%)
Producer Surplus $30,433 $33,134 (+8.87%) $32,930 (+8.20%)
Total Surplus $70,836 $69,824 (-1.43%) $75,005 (+5.89%)

+10%
Consumer Surplus $41,226 $37,520 (-8.99%) $43,093 (+4.53%)
Producer Surplus $30,670 $33,361 (8.77%) $33,183 (+8.19%)
Total Surplus $71,896 $70,881 (-1.41%) $76,276 (+6.09%)

+20%
Consumer Surplus $42,927 $39,461 (-8.07%) $45,035 (+4.91%)
Producer Surplus $31,198 $33,870 (8.56%) $33,710 (+8.05%)
Total Surplus $74,125 $73,331 (-1.07%) $78,745 (+6.23)%

+5% (adj.)
Consumer Surplus $40,279 $36,557 (-9.24%) $41,946 (+4.14%)
Producer Surplus $30,351 $33,028 (+8.82%) $32,844 (+8.22%)
Total Surplus $70,629 $69,585 (-1.48%) $74,790 (+5.89%)

+10% (adj.)
Consumer Surplus $40,980 $37,388 (-8.77%) $42,842 (+4.54%)
Producer Surplus $30,519 $33,164 (+8.67%) $32,995 (+8.11)%
Total Surplus $71,499 $70,552 (-1.33%) $75,836 (+6.07)%

+20% (adj.)
Consumer Surplus $42,297 $38,984 (-7.83%) $44,381 (+4.93%)
Producer Surplus $30,810 $33,386 (+8.36%) $33,239 (+7.89%)
Total Surplus $73,106 $72,371 (-1.01%) $77,620 (+6.17%)

Table 7: Effect of horizontal differentiation on the efficiency of dynamic pricing. We re-
view six instances, each with a distinct degree of horizontal differentiation, and reassess our
counterfactuals. In the initial three instances, we amplify the standard deviation of the
consumer-level shock to the utility function, denoted by ϵ in equation (4.1). In the ensuing
three instances, we additionally modify the utility function’s intercept to preserve the inside
goods’ baseline market share (assessed at average prices and capacity).
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